The unique problems of iron-dust combustion and its applications

DCSI WEBINAR, FRIDAY FEBRUARY 24, 2023, 13:00-14:00 CET

Xiaocheng Mi (assistant professor)

Mechanical Engineering, Power & Flow

TU/e EINDHOVEN UNIVERSITY OF TECHNOLOGY

Power generated by renewable sources is intermittent and geographically scattered.

Solar radiation vs. heat demand in the NL

Map of wind power density (WPD)

Global Wind Atlas: http://www.globalwindatlas.inf

Supply ≠ Demand in time and space

Supply ≠ Demand in time and space

How to efficiently *store* and *transport* renewable energy?

Criteria for good energy carriers to replace carbon

 Easy to release its chemical energy, reactive in air and/or water

 High specific energy, no heavy elements

- Not rare/expensive

- Non-toxic

- Controllable oxidation/combustion

Hydrogen and Lithium-ion battery have their drawbacks...

Low energy densities

Fire and explosion hazards

i

Lithium-ion battery

5

Metal-enabled Cycle of *Renewable Energy* (MeCRE) using *iron dust*

Iron-particle combustion is non-volatile

metals with *high* melting and boiling points, e.g., *iron*

metals with *low* melting and boiling points e.g., aluminum, magnesium

Unique features of iron-particle combustion

Solid-phase iron oxidation

Formation of multiple compact layers of oxides

Fe ion diffusion through the layers is rate limiting.

Païdassi, J., 1958. Sur la cinetique de l'oxydation du fer dans l'air dans l'intervalle 700–1250° C. Acta Metallurgica, 6(3), pp.184-194.

Ignition model for a single iron particle

Fe ion diffusion through the layers is *rate limiting*.

Model based on *solid-phase oxidation kinetics* describes particle *ignition*.

Mi, Fujinawa, and Bergthorson, 2022. A quantitative analysis of the ignition characteristics of fine iron particles. *Combustion and Flame*, 240, p.112011.

$\dot{q}_{\rm release} > \dot{q}_{\rm loss} \rightarrow$ particle undergoes thermal runaway

Particle temperature $T_{\rm p}$

Minimum gas temperature T_{g} to trigger thermal runaway

Ignition temperature T_{ign}

Model prediction of T_{ign} and open questions

Mi, Fujinawa, and Bergthorson, 2022. A quantitative analysis of the ignition characteristics of fine iron particles. Combustion and Flame, 240, p.112011.

Liquid iron oxidation is poorly known

External transport, surface chemisorption, internal transport, or an interplay? 14

Experimental measurement for single-Fe combustion

Laser-ignited particle burning in air at room temperature by Ning *et al*. (2021)

Ning, D., Shoshin, Y., van Stiphout, M., van Oijen, J., Finotello, G. and de Goey, P., 2022. Temperature and phase transitions of laser-ignited single iron particle. *Combustion and Flame, 236*, p.111801.

Panahi, A., Chang, D., Schiemann, M., Fujinawa, A., Mi, X., Bergthorson, J.M. and Levendis, Y.A., 2023. Combustion behavior of single iron particles-part I: An experimental study in a drop-tube furnace under high heating rates and high temperatures. *Applications in Energy and Combustion* Science, 13, p.100097.

Particle burning in a drop tube at 1350 K with various O_2 concentrations by Panahi *et al.* (2022)

Experimental measurement for single-Fe combustion

Laser-ignited particle burning in air at room temperature by Ning *et al.* (2021)

Ning, D., Shoshin, Y., van Stiphout, M., van Oijen, J., Finotello, G. and de Goey, P., 2022. Temperature and phase transitions of laser-ignited single iron particle. *Combustion and Flame, 236*, p.111801.

Panahi, A., Chang, D., Schiemann, M., Fujinawa, A., Mi, X., Bergthorson, J.M. and Levendis, Y.A., 2023. Combustion behavior of single iron particles-part I: An experimental study in a drop-tube furnace under high heating rates and high temperatures. *Applications in Energy and Combustion* Science, 13, p.100097.

Particle burning in a drop tube at 1350 K with various O_2 concentrations by Panahi *et al.* (2022)

An early campaign of Fe-particle combustion modeling

Assuming:

- Infinitely fast internal transport
- Liquid FeO is the only product (no further oxidation)

Boundary-layer resolved model by Thijs *et al.* (2022)

- 100% surface absorption of O₂ until fully converted to FeO
- Heat and mass transfer in the boundary layer is in a continuum regime

Thijs et al., 2022. Resolved simulations of single iron particle combustion and the release of nano-particles. *Proceedings of the Combustion Institute*.

Zero-dimensional single-particle model by Fujinawa *et al*. (preprint, 2022)

Experimental evidence showing further oxidation beyond FeO Phase diagram based on

Magnetite: Fe₃O₄ Hematite: Fe₂O₃ Wustite: FeO

SEM: Scanning electron microscope

BSE: Backscattering electrons

EBSD: Electron backscatter diffraction Phase diagram based on thermochemical equilibrium calculation

Hidayat, T., Shishin, D., Jak, E. and Decterov, S.A., 2015. Thermodynamic reevaluation of the Fe–O system. *Calphad*, 48, pp.131-144.

Choisez *et al.* (2022), Phase Transformations and Microstructure Evolution During Combustion of Iron Powder. Preprint available at SSRN 4080963...

Early models fail to capture Fe-combustion in higher O₂ environments

Fujinawa et al. 2022. Combustion behavior of single iron particles—Part II: A theoretical analysis based on a zero-dimensional model. (Under review) Appl Energy Combust Sci.

What are the missing physics?

Knudsen transition regime of heat and mass transfer

Two-layer model

Gas-phase molecular mean free path

Outside the Knudsen layer: Continuum heat/mass transfer Inside the Knudsen layer: Free-molecular heat/mass transfer

Mass transfer rate:

$$\dot{m}_{\mathrm{O}_2,\mathrm{FM}} = \alpha_{\mathrm{m}} \pi r_p^2 v_\delta \rho_{\mathrm{O}_2,\delta} X_{\mathrm{O}_2,\delta}$$

Heat transfer rate:

$$\eta_{\rm FM} = \alpha_{\rm T} \pi r_{\rm p}^2 p \sqrt{\frac{k_b T_\delta}{8\pi m_{\rm O_2}}} \frac{\gamma^* + 1}{\gamma^* - 1} \left(\frac{T_{\rm p}}{T_\delta} - 1\right)$$

Mass accommodation coefficient (MAC):

$$\alpha_{\rm m} = \frac{n_{\rm abs,g}}{n_{\rm tot,g}}$$

Thermal accommodation coefficient (TAC):

 $\alpha_{\rm T} = \frac{\langle E_0 - E_i \rangle}{3k_{\rm B} \left(T_{\rm s} - T_{\rm s}\right)}$

Thijs, L.C., Kritikos, E., Giusti, A., Ramaekers, W.J., van Oijen, J.A., de Goey, L.P. and Mi, X.C., 2022. On the combustion of fine iron particles beyond FeO stoichiometry: Insights gained from molecular dynamics simulations. arXiv preprint arXiv:2212.06432.

Determine TAC and MAC using MD simulations

N₂ molecule

Molecular beam simulations

- Shoot a gas molecule towards a Fe-O mixture surface

- Repeat this simulation many times with different incident velocities according to the Maxwell-Boltzmann distribution
- Get ensemble-averaged results

Results of TAC

Results of MAC

Oxidation degree (or O molar fraction) of mixture:

$$Z_{\rm O} = \frac{n_{\rm O,s}}{n_{\rm tot,s}}$$

Thijs, L.C., Kritikos, E., Giusti, A., Ramaekers, W.J., van Oijen, J.A., de Goey, L.P. and Mi, X.C., 2022. On the combustion of fine iron particles beyond FeO stoichiometry: Insights gained from molecular dynamics simulations. arXiv preprint arXiv:2212.06432.

Results for single-Fe-particle combustion

Considering:

- Effect of heat/mass transfer in the Knudsen transition regime
- Surface chemisorption limit
- Oxidation beyond FeO

Is internal transport the last missing piece of the puzzle? Assuming:

Infinitely fast internal transport of Fe and O

Thijs, L.C., Kritikos, E., Giusti, A., Ramaekers, W.J., van Oijen, J.A., de Goey, L.P. and Mi, X.C., 2022. On the combustion of fine iron particles beyond FeO stoichiometry: Insights gained from molecular dynamics simulations. arXiv preprint arXiv:2212.06432.

To consider a finite rate of internal transport

Particle-resolved model with MD-simulation-informed diffusion coefficients

Sample results for a 50- μm particle after 7 ms of constant oxidation:

Unpublished results obtained by Thijs et al. (2023)

Unique features of iron-particle combustion

Unique flame dynamics: The discrete effect

$$\chi = \frac{t_{\text{reaction}}}{t_{\text{diffusion}}} = \frac{t_{\text{reaction}}}{L^2/\alpha}$$

 α : Thermal diffusivity L : Average particle spacing

Goroshin, Lee, and Shoshin, Proc. Combust. Inst, 1998

Reduced-order modeling illustration

Lam, F., Mi, X. and Higgins, A.J., 2017. Front roughening of flames in discrete media. *Physical Review E*, 96(1), p.013107.

Unique features in turbulent flame of iron dust

https://scitechdaily.com/irons-in-the-firesmokeless-carbon-free-combustion/ A dimensional analysis assuming operational conditions similar to the Cambridge coal turbulent burner (Balusamy et al. 2013).

Length scales of the turbulence:

Inner tube diameter: $d_{in} = 15.8 \text{ mm}$ Mean injection speed: $\overline{U} = 9.16 \text{ m/s}$

Re = 7500

Integral length: $l \approx 0.5-1 \text{ cm}$ Kolmogorov length: $l_{\mathrm{K}} \approx 100 \ \mathrm{\mu m}$

Length scales of iron dust:

Particle size: $d_{\rm p}=50~\mu{\rm m}$ Mean particle spacing: $l_{\rm p}=750~\mu{\rm m}$ in air with equivalence ratio $\phi_{\rm FeO}=1$

Unique features in turbulent flame of iron dust

Length scales of the turbulence:

Inner tube diameter: $d_{in} = 15.8 \text{ mm}$ Mean injection speed: $\overline{U} = 9.16 \text{ m/s}$

Integral length: $l \approx 0.5-1 \text{ cm}$ Kolmogorov length: $l_{\mathrm{K}} \approx 100 \ \mathrm{\mu m}$

Length scales of iron dust:

Particle size: $d_{\rm p}=50~\mu{\rm m}$ Mean particle spacing: $l_{\rm p}=750~\mu{\rm m}$ in air with equivalence ratio $\phi_{\rm FeO}=1$ Multiscale interaction between reacting iron particles and turbulence:

- $d_{\rm p} < l_{\rm K} \rightarrow$ Viscous drag dissipates turbulent kinetic energy (TKE).
- $l_{\rm K} < l_{\rm p} < l$ \rightarrow Spatially discrete energy release produces TKE.
- Particle Stokes number can range from 0.01 to 10 → Particles are poorly entrained by the flow.

Preferential concentration (or clustering) of particles

Preferential concentration around Kolmogorov Stk pprox 1

Pouransari, H. and Mani, A., 2018. Particle-to-fluid heat transfer in particleladen turbulence. Physical Review Fluids, 3(7), p.074304. Why this is uniquely important in irondust combustion?

- Iron has a high density.
- Iron combustion is non-volatile, i.e., particles remain in condensed phases.

Effects on iron-dust combustion:

- Significantly changes local particle number density \rightarrow Particle collision and agglomeration.
- Significantly changes local equivalence ratio \rightarrow local quenching at a lower oxidation degree

Preliminary efforts to study iron-dust combustion in turbulence

Mixing layer simulations:

Sample results at Re ≈ 110 :

9,64772e-01 - 9.00000e-1 - 7.00000e-1 - 6.00000e-1 - 5.00000e-1 - 4.00000e-1 - 3.00000e-1 - 2.00000e-1 - 1.00000e-1 - 7.95774e-05

Fe Mass Fraction

T - 1.69300e+03 - 1.60000e+3 - 1.50000e+3 - 1.40000e+3 - 1.20000e+3 - 1.20000e+3 - 1.10000e+3 - 1.00000e+2 - 8.00000e+2 - 7.00000e+2 - 5.65954e+02

Unpublished results obtained by Hemamalini et al. (2023)

Outstanding problems

- To determine ignition conditions of single and dispersed cloud of iron particles
- Heat release rate (HRR) of iron particles at different oxidation stages:
 - Heterogeneous oxidation mechanisms
 - Spatially non-uniform combustion in turbulence
 - Radiative heat transfer among the particles and to the surrounding
- Understand and reduce emissions of NOx and oxide nanoparticles

Thank you! Questions?

Email: x.c.mi@tue.nl