## Hydrogen combustion in gas turbines

Sikke Klein, November, 26<sup>th</sup> 2021 Luuk Altenburg, Mark Tummers, MSc students



### Agenda

- Hydrogen FOR gas turbine applications
- Hydrogen IN gas turbine applications
- Flashback theory and observations
- Flashback modeling
- Application for hydrogen in gas turbines
- Conclusions and next steps
- Questions



## Hydrogen FOR gas turbine applications



Why Hydrogen in gas turbines ?





Green hydrogen : no CO<sub>2</sub>



### Why hydrogen in gas turbines ?



#### □Transport/Aviation

□ liquidH<sub>2</sub> : 10 MJ/l Kerosene: 33 MJ/l □ liquidH<sub>2</sub> : 145 MJ/kg Kerosene: 45 MJ/kg □ No infrastructure for cryogenic liquid H2



#### Baseload Combined heat and power

Overall efficiency losses: power => H<sub>2</sub> => CHP
 Baseload operation => high impact of losses



#### Balancing power

- □ Round trip efficiency: "only" 40%
- □ Retrofit potential => low costs
- $\Box$  High H<sub>2</sub> to power efficiency: 55-60%

For all cases: current availability of green hydrogen is zero to very limited **TU**Delft

#### Electricity supply : Assume a fossil free electricity system ....

 Generation by Variable Renewable Energy (VRE): solar, wind on shore and wind off shore



Balancing of supply and demand required: about 25% of the non flexible load

# 2020 CE Delft Study shows that $H_2$ in **retrofit** gas turbine power plant is attractive for balancing



**T**UDel

Figuur 5 - Marginale en vaste kosten in 2030 van technieken om tekorten aan te vullen

### Hydrogen is however not cheap



Simplified business cases: Green  $H_2$ : annual costs : 10% of CAPEX + average power costs (70% LHV efficiency) Gray  $H_2$ : only commodity gas &  $CO_2$  (81% LHV efficiency) Both cases: transport & storage excluded

#### Power from hydrogen is even more expensive



Current (extreme) price levels could match hydrogen based power



### Why Hydrogen for gas turbine applications ?

- CO<sub>2</sub> reduction
- Challenges Green Hydrogen:
  - Availability
  - Price level
  - Intermittency of generation (coupled to wind/solar) => storage
  - Efficiency losses in value chain
- Potential sources:
  - Regional production & storage
  - Import
  - .....



## Hydrogen IN gas turbine applications



### Challenges for hydrogen in gas turbines: flash back, emissions (NOx), dynamics and leakages Diffusivity



**T**UDelft

(\*) Why hydrogen flames are different: Effects of preferential diffusion on dynamics and stabilization Prof. Jeroen van Oijen. WEBINAR DUTCH SECTION OF THE COMBUSTION INSTITUTE, SEPTEMBER 24, 2021

#### Main impact for hydrogen at higher volume percentages





### Advertised maximum H<sub>2</sub> vol% for different gas turbine suppliers

|            |             |            |                   | H2 Capability, Vol % |       |            |
|------------|-------------|------------|-------------------|----------------------|-------|------------|
|            |             |            | Power Output, MW. |                      | · · · | Diffusion, |
|            |             | Frequency, | Natural Gas, ISO  |                      |       | unabated   |
|            |             | Hz         | Base Load         | DLE                  | WLE   | NOx        |
|            | SGT5-9000HL | 50         | 593               | 30                   |       |            |
|            | SGT5-8000H  | 50         | 450               | 30                   |       |            |
|            | SGT5-4000F  | 50         | 329               | 30                   |       |            |
| Heavy      | SGT5-2000E  | 50         | 187               | 30                   |       |            |
| Duty       | SGT6-9000HL | 60         | 405               | 30                   |       |            |
|            | SGT6-8000H  | 60         | 310               | 30                   |       |            |
|            | SGT-5000F   | 60         | 215 - 260         | 30                   |       |            |
|            | SGT6-2000E  | 60         | 117               | 30                   |       |            |
|            | SGT-800     | 50 or 60   | 48-57             | 60                   |       |            |
|            | SGT-750     | 50 or 60   | 40/34 - 41        | 40                   |       |            |
|            | SGT-700     | 50 or 60   | 33/34             | 66                   |       |            |
| Industrial | SGT-600     | 50 or 60   | 24/25             | 60                   |       |            |
|            | SGT-400     | 50 or 60   | 10 - 14/11 - 15   | 10                   |       | 65         |
|            | SGT-300     | 50 or 60   | 8/8               | 30                   |       |            |
|            | SGT-100     | 50 or 60   | 5/6               | 30                   |       | 65         |
|            | SGT-A65     | 50 or 60   | 60 - 71/58 - 62   | 15                   | 100   |            |
| Aero-      | SGT-A45     | 50 or 60   | 41 - 44           |                      | 100   |            |
| derivative | SGT-A35     | 50 or 60   | 27 - 37/28 - 38   | 15                   | 100   |            |
|            | SGT-A05     | 50 or 60   | 4/6               | 2                    | 15    |            |

Siemens "Hydrogen Combustion in Siemens Gas

Turbines: Sales Information v 3.0," July 2019

|         | Туре          | Notes                                          | TIT <sup>0</sup> C [ <sup>0</sup> F]<br>or Class | Max H <sub>2</sub> %<br>(Vol) |
|---------|---------------|------------------------------------------------|--------------------------------------------------|-------------------------------|
| SdHM    | Diffusion     | N2 Dilution, Water/Steam<br>Injection          | 1200~1400<br>[2192~2552]                         | 100                           |
|         | Pre-Mix (DLN) | Dry                                            | 1600 [2912]                                      | 30                            |
|         | Multi-Cluster | Dry/Underdevelopment -<br>Target 2024          | 1650 [3002]                                      | 100                           |
| GE      | SN            | Single Nozzle (Standard)                       | B,E Class                                        | 90-100                        |
|         | MNQC          | Multi-Nozzle Quiet Combustor<br>w/ N2 or Steam | E,F Class                                        | 90-100                        |
|         | DLN 1         | Dry                                            | B,E Class                                        | 33                            |
|         | DLN 2.6+      | Dry                                            | F,HA Class                                       | 15                            |
|         | DLN 2.6e      | Micromixer                                     | HA Class                                         | 50                            |
| Siemens | DLE           | Dry                                            | E Class                                          | 30                            |
|         | DLE           | Dry                                            | F Class                                          | 30                            |
|         | DLE           | Dry                                            | H Class                                          | 30                            |
|         | DLE           | Dry                                            | HL Class                                         | 30                            |
| Ansaldo | Sequential    | GT26                                           | F Class                                          | 30                            |
|         | Sequential    | GT36                                           | H Class                                          | 50                            |
|         | ULE           | Current Flamesheet <sup>™</sup>                | F, G Class                                       | 40                            |
|         | New ULE       | Flamesheet <sup>™</sup> Target 2023            | Various                                          | 100                           |

*Emerson, B.E. et al., "Assessment of Current Capabilities and Near-Term Availability of Hydrogen-Fired Gas* 

*Turbines Considering a Low-Carbon Future", GT2020-*15714

#### Combustor designs under development for high hydrogen gas turbines

#### Non premixed combustion => high NOx (reduction of NOx: flame temperature/residence time) air supply Hydrogen supply 3rd circle Lifted Flame 1st cicle 2nd circle Flow along surface outer vortices flame anchoring and stabilization uel injection, jet in onvex perforated pla cross flow mixing Air holes (front view) Fuel nozzles ombustion air air stream contraction air guiding panel Outer fuel (to 2nd, 3rd circles) Small diffusion flames MicroMixing -Combustion products or Diluents High flame (water, steam, N<sub>2</sub>)temperature regis eless combustion FLOX Steam injection **TU**Delft

## Premixed combustion => low NOx (flashback prevention)





#### High swirl + axial injection

#### **Sequential Combustion**



<sup>+</sup> Sequential combustion



Axial staged combustion

## Flashback Theory and Observations



### What is Flashback?

Upstream propagation of the flame into the burner, leading to e.g.:

- Local overheating => damage
- Incomplete burning & mixing => emissions, performance etc.
- Shutdown of the engine to prevent (further) damage





### Flashback in premixed flames

#### Two main types:

- **1.** Boundary layer flash back
  - a) Unconfined
  - b) Confined



2. Swirling flames: Combustion induced vortex break down



**T**UDelft

Combustion driven oscillations amplify both cases

#### **Classic flashback theory**

- Basis: Lewis and Von Elbe (1943)
- Local velocity in boundary layer below laminar flame speed at penetration distance  $\delta_b$ :

 $S_L(\delta_b) > u(\delta_b)$ 

- $\delta_b$  minimum location from wall where flame can persist (penetration depth  $\delta_b > \delta_{quench}$ )
- Critical velocity gradient: Flashback when flow velocity (g<sub>f</sub>) gradient below critical (g<sub>c</sub>):

$$g_f < g_c \longrightarrow \frac{\partial u}{\partial y} < \frac{S_L}{\delta_b}$$





#### Flame adverse pressure

- Rankine Hugionot conditions across the flame front
- Flow is accelerated in flame front due to expansion/temperature in increase



- S<sub>f</sub> : Flame speed
- Pressure upstream of flame > down stream of flame => Retardation of incoming flow by flame
   TUDelft

#### Confined versus unconfined flame

- Confined flames much higher critical velocity gradient
  - "Flashback occurs at lower velocities"
- Effect of flame adverse pressure
  - Unconfined flames: no to little impact on incoming flow in tube
  - Confined flames: adverse pressure creates boundary instability in incoming flow



Enclosure

Pilot

burner

0.9

Ceramic block

Pilot

burner

#### How does flashback look like?

unconfined

confined









#### Flame flashback animation





Velocity

#### Flashback map unconfined flame in TU Delft laboratory



Standard: U\_bulk versus equivalence ratio



U\_bulk normalized with laminar flame speed



## Boundary layer flash back

**1**. Flame shape modification *(above burner)* 

**2**. "Jump into burner" (*at burner*)

**3**. Confined flashback *(in burner)* 

**T**UDelft



#### Dark color

- Low seeding density
- High temperature
- Burnt

#### **Experiments:**

- Faldella (2020)
- Lambers (2021)
- Willems (in progress)

#### Model development:

- Tober (2018)
- Björnsson (2019)
- Van Put (2021)



•

- High seeding density
- Low temperature
- Unburnt

#### Boundary layer flashback: above burner (phase 1)



- Cusp formation
- Incoming flow is decelerated by flame front





- Flash back sequence for natural gas
- Delta t = 0.666 ms

Faldella (2020)

#### Boundary layer flashback: above burner (phase 1)



.... 3 -(c) Flashback process step 3, t = 3.9 ms. -..... 100 4 4 4 4 8 8 (d) Flashback process step 4, t = 4.2 ms. 144 -5 . . . . . . .

(e) Flashback process step 5, t = 4.8 ms.

#### Adverse gradient increases with flames closer to flashback

Averaged Euler equation

$$\frac{\partial \overline{u^*}}{\partial x^*} + \frac{1}{r^*} \frac{(\partial r^* \overline{v^*})}{\partial r^*} = 0$$

$$\overline{u^*} \frac{\partial \overline{u^*}}{\partial x^*} + \overline{v^*} \frac{\partial \overline{u^*}}{\partial r^*} = - \frac{\partial \overline{p^*}}{\partial x^*} - \frac{\partial \overline{u'^* u'^*}}{\partial x^*} - \frac{1}{r^*} \frac{\partial \left(r^* \overline{u'^* v'^*}\right)}{\partial x^*}.$$
Advection Advection axial direction axial direction direction

At central axis simplifies to:

$$\overline{u^*}\frac{\partial\overline{u^*}}{\partial x^*} = -\frac{\partial\overline{p^*}}{\partial x^*} - \frac{\partial\overline{u'^*u'^*}}{\partial x^*} - \frac{\partial\overline{u'^*v'^*}}{\partial r^*}.$$



Adverse pressure gradient increases with flame closer to flashback



#### No influence of flame adverse pressure on incoming flow



### Boundary layer flashback: at burner (phase 2)

- 1. Fluctuating flame
- 2. Impact of burner rim temperature
- Impact of turbulent fluctuations (~ "Turbulent flame speed effect")
- 4. Impact of low velocities streaks





#### Boundary layer flashback: at burner : 1. Fluctuating flame





#### Boundary layer flashback: at burner : 2. Temperature

Cooling of burner rim decreases minimum thack velocity





(a) Bulk velocity at flashback conditions for the cooled and uncooled burner configuration, as a function of equivalence ratio for different  $\rm H_2$  content in the fuel.

#### Faldella, 2020



### Boundary layer flashback: at burner : 3. Turbulent flame speed

 Impact of turbulent flucutations (~ "Turbulent flame speed effect")



)elft





Correlates well with turbulent flame speed

Lambers, 2021

#### Boundary layer flashback: at burner : 4. Low velocity streaks

Flashback



No Flashback





Occurrence of flashback: statistical phenomena

### Boundary layer flashback: in burner (phase 3, "confined")

- Flame adverse pressure gradient creates recirculation zone in front of flame
- Boundary layer instability due to adverse pressure gradient





Will be discussed in more detail in modelling part of this presentation



#### Summary boundary layer flashback





Phase 2:

in burner Δр Δр Recirculation zone

Phase 3:

**T**UDelft

Flame flashes back into premixer at combination of momentary flame position, flame speed, low velocity streak

Confined flashback due to boundary layer instability caused by flame adverse pressure

#### Swirling flames: Combustion Induced Vortex Breakdown





Burmberger (2009)

### Swirling flames: Combustion Induced Vortex Breakdown

Adverse pressure gradient by flame and adverse pressure gradient from expanding swirling flow can move stagnation point further upstream





(a) isotherm => stable recirculation bubble
 (b) expansion in reaction zone => flame moves upstream

(c) Flames closer to stagnation point



Kiesewetter (2007)

## Flashback modeling



#### Flashback modeling for unconfined flames





#### Decreasing bulk velocity

Van Put (2021)

### Flashback map for unconfined flames



- Standard Zimont turbulent flame speed closure captures flashback behaviour quite well
- Main deviations at higher H2 concentrations
- Flow retardation from flame adverse pressure

### Flame flashback confined flame: Eichler experiments (2011)

- µ-PIV + chemiluminescence
- CH4 and H2
- 0°,2°,4°channels
- Studied both turbulent and laminar flow
- Wide range of equivalence ratios, from 0.25 to 1.0
- Recirculation area in front of an upstream propagating flame front



Figure 4.18: Axial velocity contours during turbulent  $H_2$ -air wall flashback in the 0° channel at  $\Phi = 0.345$ .



### Flame adverse pressure gradient: impact on boundary layer flow



- Flow decelerates due to adverse pressure gradient => flow reversal at wall
- du/dy = 0 at wall => wall stress is zero
- Analysis worked out by Stratford in the 1950's to calculate boundary layer instability for a flow exposed to an adverse pressure gradient (e.g. flow over a wing)

(First proposed by Hoferichter (2017) for boundary layer flashback)

#### Stratford criterion calculates zero velocity gradient at wall

Assumed shape for boundary layer:

$$\frac{u}{U} = \left(\frac{y}{\delta}\right)^{\frac{1}{n}}$$

General Stratford

$$C_p^{\frac{1}{4}(n-2)} \left(\delta \frac{dC_p}{dx}\right)^{\frac{1}{2}} = \left(\frac{3(0.41\beta)^4}{(n+1)n^2}\right)^{\frac{1}{4}} \left(1 - \frac{3}{n+1}\right)^{\frac{1}{4}(n-2)}$$

Left hand side: ~Pressure gradient Right hand side: ~Boundary layer profile

LHS = RHS => T = du/dy = 0 at wall

$$C_p(x) = \frac{p(x) - p_m}{\frac{1}{2}\rho U^2}$$

- LHS > RHS => negative velocity close to wa
  - Stratford boundary layer stability: unstable
  - Flash back analysis: onset of flashback



Björnsson (2019)

### Stratford criterion for confined flame flashback



- Adverse pressure gradient:
  - Over flame (Rankine Hugionot)
  - Main flow (from CFD)
- Turbulent flame speed correlation (local value: from CFD)
- Low Lewis number correction (local enrichment)







 $\beta$ : empirical constant derived by Stratford

#### From CFD:

δ: 'boundary layer thickness'n: profile constantU: far field ('mean') velocity



### BLF Model compares very well for academic cases



- *f***U**Delft
- Improvement at higher temperatures: Consequence of other low Lewis number correction

Original BLF model : TU Munich/Hoferichter model

### Flash back in 2° diffuser well predicted



## Application for hydrogen in gas turbines



#### What did we learn till now?

- Important for flashback in premixed hydrogen flames
  - Local turbulent/laminar flame speed (composition, temperature, equivalence ratio, Lewis number,..)
  - Local flow structure
  - Swirl/Recirculation zone
  - Local mean flow pressure gradient
- Lot of insights is still missing

  - Detailed interaction flame front 
    incoming flow in boundary layer
  - Near wall effects



#### Combustor designs under development for high hydrogen gas turbines Premixed combustion => low NOx

#### **Control of swirl**



High swirl + axial injection



TUDelft

#### **Control of flame speed**



#### Sequential combustion



Axial staged combustion

#### "Fixed" vortex stabilisation



Trapped vortex

#### TU Delft H<sub>2</sub> Combustion & Flashback research



NOBI.

**Experimental** 





#### Advanced laser diagnostics

#### Theoretical/Modelling



$$C_{p}^{\frac{1}{4}(n-2)} \left(\delta \frac{dC_{p}}{dx}\right)^{\frac{1}{2}} = \left(\frac{3(0.41\beta)^{4}}{(n+1)n^{2}}\right)^{\frac{1}{4}} \left(1 - \frac{3}{n+1}\right)^{\frac{1}{4}(n-2)}$$
Boundary layer flashback model



#### TU Delft BLF model performs well on gas turbine relevant geometries







### Experiments with the TU Delft trapped vortex burner

Top view



**T**UDelft

Altenburg (2020)





#### Application of the TU Delft BLF model to TU Delft trapped vortex burner



**T**UDelft

a) Dome wall.

Location most prone to flashback





b) Points along the dome wall, inlet u<sub>bulk</sub>=3.8 m/s.



## Conclusions

## & Future developments



### Conclusions

- Hydrogen electricity from (retrofit) combined cycle power plants good candidate for zero carbon balancing of grid
- 100% H<sub>2</sub> burners for gas turbines in development, close to demonstration phase
- Flashback much more complex phenomena than simple : flame speed > flow velocity
  - Transient phenomenon => occurrence in turbulent flows to be based on statistics
- For unconfined flashback : good predictor: flame speed > local flow velocity
- For confined flashback: flame adverse pressure => boundary layer instability
- TU Delft boundary layer flashback model performs well both for academic burners and gas turbine configuration
- TU Delft BLF model very valuable tool for design of flashback resistant gas turbine combustors
   TUDelft

### Projects/Research in progress/under development

- HighHydrogen project (RVO support)
  - Increase insights in Flamesheet behavior: semi 2D burner with full optical access
  - Validate model with pressurized Flamesheet results
  - Develop detector/active control of flashback by using a precursor
- Strengthen knowledge and application for swirl burners: H2Flex project with OPRA (RVO support)
- Detailed insights in confined flashback using set up with controllable pressure gradient for better insight into interaction boundary layer-flame (looking for funding)
- Continue academic research on elementary burners



#### THANK YOU

- Academic cooperation: Mark Tummers, Luuk Altenburg, Bart Hoek, Dirk Roekaerts, Rene Pecnik, Arvind Rao, Rob Bastiaans, Jeroen van Oijen, ....
- MSc students: Joeri, Olafur, Max, Christos, Tim, Filippo, Akhil, Max, Darshan, Sachin, Gersom, Fedor
- Companies: Thomassen Energy, OPRA, Vattenfall, Nobian, Emmtec, Dow, ...
- Funding: RVO : HighHydrogen (phase I and II)
   RVO : H2 Flex

SGO: Stichting Gas turbine Onderwijs



## **QUESTIONS ?**





### Bibliography

B. Lewis and G. von Elbe, "Stability and Structure of Burner Flames," J. Chem. Phys., vol. 11, no. 2, pp. 75–97, Feb. 1943.

C. T. Eichler, "Flame Flashback in Wall Boundary Layers of Premixed Combustion Systems," p. 229, 2011

B. S. Stratford, "The prediction of separation of the turbulent boundary layer," J. Fluid Mech., 1959.

V. Hoferichter, C. Hirsch, and T. Sattelmayer, "Prediction of Confined Flame Flashback Limits Using Boundary Layer Separation Theory," *J. Eng. Gas Turbines Power*, 2017.

V. Hoferichter, "Boundary Layer Flashback in Premixed Combustion Systems," 2017.

G. M. Baumgartner, "Flame Flashback in Premixed Hydrogen-Air Combustion Systems," 2014.

S.G. Burmberger, "Optimierung der aerodynamischer Flammenstabilisierung fuer brennstofflexibele vorgemischte Gasturbinenbrenner", PhD Thesis, TU Munich, 2009.

F. Kiesewetter, M. Konle, T. Sattelmayer, "Analysis of Combustion Induced Vortex Breakdown Driven Flame Flashback in a Premix Burner With Cylindrical Mixing Zone", *J. Eng. Gas Turbines Power*. Oct 2007, 129(4): 929-936 <u>https://doi.org/10.1115/1.2747259</u>

A. Kalantari, E. Sullivan-Lewis, and V. McDonell, "Flashback Propensity of Turbulent Hydrogen-Air Jet Flames at Gas Turbine Premixer Conditions," *J. Eng. Gas Turbines Power*, vol. 138, no. 6, Jun. 2016.

Y. Lin and S. Daniele, "Turbulent Flame Speed as an Indicator for Flashback Propensity of Hydrogen-Rich Fuel Gases," vol. 135, no. November, pp. 1–8, 2013.

S. Daniele, P. Jansohn, and K. Boulouchos, "Flashback propensity of syngas flames at high pressure: Diagnostic and control," in *Proceedings of the ASME Turbo Expo*, 2010, vol. 2, no. PARTS A AND B, pp. 1169–1175.

S. Kadowaki, "Flame velocity of cellular flames at low Lewis numbers," Combust. Sci. Technol., 2001.

O. H. Björnsson, S. A. Klein, and J. Tober, "Boundary Layer Flashback Model for Hydrogen Flames in Confined Geometries Including the Effect of Adverse Pressure Gradient", Journal of Engineering for Gas Turbines and Power 143(6), September 2020 DOI: 10.1115/1.4048566



#### MSc theses TU Delft

| Boundary layer flashback prediction of a low emissions full hydrogen burner for gas turbine applications.     | Joeri Tober          | http://resolver.tudelft.nl/uuid:be4a3f30-b39d-4be5-9d88-f165ef68d851 |
|---------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------|
| Boundary layer flashback prediction for low emissions full hydrogen gas turbine burners using flow simulation | Olafur Bjornsson     | http://resolver.tudelft.nl/uuid:8272a27d-692d-4721-a24c-98ffd4c52511 |
| Hydrogen flash back experiments                                                                               | Filippo Faldella     | http://resolver.tudelft.nl/uuid:ab0c472e-0dd1-4086-8eeb-18ef14ee226e |
| Modeling of hydrogen-elektrolysis-storage-utilization chain                                                   | Nick Kimman          | http://resolver.tudelft.nl/uuid:46183251-f22a-42b5-a994-ed353d4338c0 |
| Modeling of hydrogen flash back, application of TU Delft model to different geometries                        | Christos Saraktsanis | http://resolver.tudelft.nl/uuid:a4ef3e3d-29cb-4855-a14a-5f0fafc50966 |
| Modeling of hydrogen flash back in diffuser using Large Eddy Simulations                                      | Akhil Penmatsha      | http://resolver.tudelft.nl/uuid:968bb3f5-0378-4872-9d05-cb0ec4fc629a |
| Numerical modelling of flame flashback in premixed tube burners with turbulent flow                           |                      |                                                                      |
| and high hydrogen content                                                                                     | Max van Put          | http://resolver.tudelft.nl/uuid:84b5e88d-72b8-4663-a597-84993aa347f7 |
| Boundary Layer Flashback of Turbulent Premixed Hydrogen/DNG/Air Flames                                        |                      |                                                                      |
| produced by a Bunsen Burne                                                                                    | Tim Lamberts         | http://resolver.tudelft.nl/uuid:ad99dd53-063a-48c8-9cf2-cafd31ca3deb |

