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Hydrogen

Why hydrogen flames are different - J.A. van Oijen

Hydrogen receives a lot of attention

▪ No CO2 is emitted when H2 is burnt

▪ Simplest fuel to produce from renewable electricity

▪ Large scale energy storage

▪ Large potential for 

▪ Residential and industrial heat

▪ Power generation

▪ Transport sector

“The world is moving ahead on the need to decarbonise and the 

need to commit to climate neutrality — so in that context the 

importance of hydrogen increases on almost a daily basis” —

Frans Timmermans, EC EVP for the European Green Deal
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Hydrogen fuel
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▪ Hydrogen as (partial) replacement for natural gas (CH4)

▪ Existing combustion equipment is usually not suited for H2

Property Methane Hydrogen

Heating value (LHV, MJ/kg) 50 120

Density (kg/m3) 0.657 0.089

Stoich. Air-Fuel Ratio (mol/mol) 9.5 2.38

Flame temperature (K) 2220 2380

Laminar burning velocity (m/s) 0.37 2.18 (2.84)

Flammability limit (fuel mol%) 5 – 15 4 – 75

Autoignition temperature (K) ~800 ~850

Minimum ignition energy (mJ) 0.20 0.02

Diffusivity in air (cm2/s) 0.21 0.76

At standard conditions
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Flame properties
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▪ High heat transfer rate

▪ High NOx formation rate

▪ High power density

▪ Flame stabilization problems
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Modes of combustion

Non-premixed flames

▪ Reactants are initially separated

▪ Diffusion/mixing controlled

▪ Relatively slow conversion

▪ High flame temperature: high NOx

emissions

Premixed flames

▪ Reactants are mixed before they enter 
the reaction zone

▪ Explosive mixture, propagating front

▪ Flame stability: Flashback

▪ Low pollutant emissions
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Flame stretch theory
Impact of Lewis number on flame speed
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Law (2006), Combustion Physics, Cambridge University Press

Van Oijen et al. (2016) Prog. Energy Combust. Sci. 57:30-74 



Premixed laminar flames

▪ Propagating reaction waves

▪ Laminar flame speed sL

▪ Reaction-diffusion structure

▪ Large activation energy:

▪ Thin reaction zone

▪ Heat and mass diffusion zone

▪ Reaction rates are determined by burnt 
mixture
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Premixed flame structure

▪ Governing equations steady 1D case

▪ Solution (preheat zone)

Flame thickness:

Lewis number:

sL

uu

Yu, Tu Yb, Tb

Le = 1
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Integral analysis
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▪ Integrate governing equations from unburnt to burnt

▪ Diffusive fluxes are zero and Yb = 0

Mass burning rate

(unstretched)

Mass consumption rate

sL

uu

Yu, Tu Yb, Tb

9



▪ Classical definition: Fractional rate of change 
of area of flame surface element

▪ Flow straining, flame curvature, flame motion

▪ De Goey & Ten Thije: Fractional rate of 
change of mass in flame volume element

▪ Stretch rate defined in whole flame structure 
including preheat zone

Flame stretch
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Flame stretch has an impact on the burning velocity

▪ Consider flat strained flame

▪ Integral analysis

Mass burning rate of stretched flames
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Karlovitz integral, Ka
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Non-unity Lewis number effects

▪ Enthalpy profiles h = qcY + cpT

Integrating enthalpy equation

Combining with continuity equation
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Le = 1

Dashed curves: Le = 0.5

Δhb
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Preferential diffusion effects
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▪ In general, all species have different Lei ≠ 1

▪ Results in changes in element mass fractions ΔZj at the burnt side

▪ Affects the equilibrium composition at the burnt side Tb, Yi,b

▪ And thus, the reaction rates ω and the mass consumption rate

▪ Mass burning rate

▪ Linearized for weak stretch, Ka ≪ 1

Direct stretch 

effect
Indirect, preferential 

diffusion effects

Markstein

number Ma
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Comparison with simulations

▪ Stretched CH4-air flames in counterflow ▪ Stretched CH4-H2-air flames
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•  Detailed simulation

― Theory

- - Weak stretch theory

Lei = 1
CH4

60% H2

Lei ≠ 1
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60% H2
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Markstein number
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Cellular instabilities

▪ Density jump in flames causes hydrodynamic instability

▪ Direct flame stretch effect has stabilizing influence

(Positive stretch decreases burning velocity)

▪ Preferential diffusion effects can counteract this (Ma < 1)

(Positive stretch may even increase burning velocity)

M. Day, Lawrence Berkeley Nat. Lab
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Flame stabilization
Impact of preferential diffusion effects
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Flame stabilization on perforated plate burner
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▪ Used in domestic heating systems

▪ Balance of flame speed sL

and gas mixture velocity ug

▪ Flame flashback/blow off

sL

ug

sL

ug

Local quenching
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Experiment
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▪ Lean CH4-H2-air flames on multi-slot burner (Y. Shoshin)

▪ Fuel mixtures with same flame speed (sL = 10 cm/s)

CH4

0.6 CH4 

+ 0.4 H2

Intensified burning at 

flame base (K > 0)

Weaker burning at 

flame tip (K < 0)

▪ H2 has much higher 

diffusivity than methane 

(LeH2 = 0.3 vs LeCH4 = 1)

▪ Together with flame stretch 

and curvature this causes 

local enrichment: φ↑

▪ Resulting in local higher 

burning rate: sL↑

▪ Affects stabilization a lot

φ = 0.58

φ = 0.52
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Bluff body stabilized flames
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▪ Experimental and numerical study of flames 
stabilized on cylindrical bluff body

▪ At fixed velocity ug, equivalence ratio is 
decreased until blow-off occurs

▪ Anomalous blow-off limit behavior observed for 
mixtures with H2

▪ Experiments by Y. Shoshin

▪ Simulations by F. Vance
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Flame stabilisation: experiment vs simulation

Why hydrogen flames are different - J.A. van Oijen

▪ Three CH4-H2 fuel mixtures with equal 
flame speed, sL = 10 cm/s

▪ Inlet velocity 1 m/s

▪ Comparison of Abel inverted CH* chemi-
luminescence (top) and computed heat 
release rate (bottom)

▪ Numerical results allow detailed 
quantitative analysis of stretch, heat loss 
and preferential diffusion effects

20% H2 40% H20% H2

Vance et al. (2021) Combust. Flame, available online
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Effect of Lewis number on lean limit flame

▪ Lean limit flames for 4 fuels 
with different Lewis number

▪ Inlet velocity 1 m/s

▪ Strong Le effects enhance 
stability of H2 enriched 
flames: Neck formation

▪ Different blow-off 
mechanisms observed
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Propane (Le=1.8) Methane +20% H2 +40% H2
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Vance et al. (2019) Proc. Combust. Inst., 37:1663-1672
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ϕ = 0.20 ϕ = 0.13                               ϕ = 0.11 ϕ = 0.105   

ϕ = 0.103 ϕ = 0.1                                  ϕ = 0.094 ϕ = 0.088  

H2-air flame shapes approaching lean limit (V = 1 m/s)

▪ Pencil-like flame 

▪ Quenches

▪ Residual flame

▪ Flame ball! 
(PhD Zhen Zhou)

▪ Combustion at 
extremely low φ

▪ Simulations show 
same behavior
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Vance et al. (2021) Energies, 14, 1977
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H2-air lean limit flames
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Stable flames

Blow-off

At higher mixture velocity, 

lean limit is lower!
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Hydrogen flame flashback
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▪ Simulations of H2-air flame 
on slot burner

▪ Decrease inlet velocity Vin

at constant φ until flame 
flashes back

▪ Enhanced burning rate 
due to preferential 
diffusion effects, leads to 
early flashback

Normalized 

temperature

φ = 0.7

Normalized H2

consumption rate 

of limit flames at 

different φ

Vance et al. (2021) Combust. Flame, submitted
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Complex dynamics
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▪ Unsteady simulation

▪ Flashback when velocity is lowered
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Flamelet-Generated Manifolds for H2 flames
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Flamelet-Generated Manifold (FGM) method
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▪ Reduced order modelling of chemistry

▪ Combination of low-dimensional manifold and flamelet approach

▪ Solutions of 1D flamelet equations are used to construct a manifold

▪ Chemical composition (Yi, T) is parameterized by small number of control variables yj

▪ Simplest form, 1D FGM, where y1 is reaction progress variable

Van Oijen & De Goey (2000) Combust. Sci. Technol. 161:113-138

Van Oijen et al. (2016) Prog. Energy Combust. Sci. 57:30-74 
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Multi-dimensional FGM

Why hydrogen flames are different - J.A. van Oijen

▪ In 1D FGM, enthalpy and element mass fractions are fixed, but in most applications, 
this is not the case due to, e.g., heat loss, mixture stratification, dilution, etc.

▪ Additional manifold dimensions (parameters) are needed to account for the effect of 
these changes on chemistry

▪ For non-adiabatic effects, enthalpy is added as manifold coordinate

▪ Series of flamelet solutions for different enthalpy
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FGM for H2 flames
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▪ Strong preferential diffusion effects in H2 flames 
cause changes in Zj and h

▪ In principle all Zj’s and h should be added to the 
manifold as additional independent parameters

▪ For weak stretch, DZj’s and Dh are not independent 
but couple: One additional dimension is sufficient

C

O

H

h
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Preferential diffusion effects in FGM

▪ In practice: Include a stretch term in flamelet equations and solve for a range of stretch 
rates K

▪ This results in a 2D FGM parameterized 
by two control variables

▪ Reaction progress variable

▪ Element mass fraction

Source term of progress variable

― K = 0 s-1

- - K = 200 s-1

Why hydrogen flames are different - J.A. van Oijen31



Preferential diffusion effects in FGM
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▪ Preferential diffusion terms in equations for control variables need to be retained

▪ Linear combinations of species mass fractions

▪ Assuming                       (Local 1D FGM)

▪ New approach assuming constant Lewis numbers
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Validation of FGM against detailed chemistry

▪ 1D strained flames, CH4-H2-air (40% H2, φ = 0.7)

▪ 1D FGM only account for direct stretch 
effect

▪ 2D FGMs capture preferential diffusion 
effects

▪ Not very sensitive to how the Zj, h 
changes are included in the flamelets

▪ 2D FGM A: stretched flat flamelets

▪ 2D FGM B: stretched curved flamelets

Why hydrogen flames are different - J.A. van Oijen33



Validation of FGM against detailed chemistry
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▪ Expanding flame kernel in turbulent flow

▪ 2D direct numerical simulation

Mass fraction of H radical at t = 0.36 ms

(CH4-H2-air, 40% H2, φ = 0.7)
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Turbulent flame
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▪ Lean premixed turbulent 
flame on slot burner
CH4-H2-air, 40% H2, φ = 0.7

▪ Direct numerical simulation

Vreman et al. (2009) Int. J. Hydrogen Energy 34:2778-2788

2D FGM 

with Le 

effects

▪ More intense burning in convex regions

▪ Flame surface area/volume increases due to instabilities

▪ Turbulent flame speed increases by 30%!

1D FGM 

without Le 

effects

Snapshots of chemical source term
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Unsteady phenomena

▪ Response to sudden jump in stretch rate

▪ Time delay of tf = df/sL: High frequencies 
will be dampened

▪ Preferential diffusion effects are dampened 
in flames with fast fluctuating stretch rates

▪ Modelling challenge in unresolved 
simulations (LES/RANS)!

▪ DNS of highly turbulent flames required to 
gain insight and to develop models

Why hydrogen flames are different - J.A. van Oijen36
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Other modeling challenges
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▪ Reactions occur at rather low temperature

▪ Peak heat release rate at T < 1000 K

▪ Reaction layer of H2 flame is not thin!

FGM challenge

▪ Reaction rates in H-consumption layer at the leading 
edge are sensitive to Tb (near the H-production layer)

▪ Non-local dependency: Source term depends on 
condition downstream

▪ Overprediction of source term when burnt side is 
cooled → Too high flame speed, flashback
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Why hydrogen flames are different
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▪ High diffusivity of H2 leads to strong preferential diffusion effects

▪ Response of lean H2 flames to stretch is opposite to that of most common fuels

▪ Huge impact on flame dynamics and stabilization

▪ Cellular instabilities

▪ Increased flame surface density

▪ Anomalous blow-off behavior

▪ Prone to flashback due to enhanced burning rate near flame holder
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Lean hydrogen flames burn stronger when stretched



COMBUSTION OF FUTURE FUELS
Enabling the energy transition

Thanks to all my colleagues at TU/e who participated in this research


