Why hydrogen flames are different: Effects of preferential diffusion on dynamics and stabilization

WEBINAR DUTCH SECTION OF THE COMBUSTION INSTITUTE, SEPTEMBER 24, 2021

Jeroen van Oijen

Mechanical Engineering, Power & Flow

Hydrogen

Hydrogen receives a lot of attention

- No CO₂ is emitted when H₂ is burnt
- Simplest fuel to produce from renewable electricity
- Large scale energy storage
- Large potential for
 - Residential and industrial heat
 - Power generation
 - Transport sector

"The world is moving ahead on the need to decarbonise and the need to commit to climate neutrality — so in that context the importance of hydrogen increases on almost a daily basis" — *Frans Timmermans, EC EVP for the European Green Deal*

Hydrogen fuel

- Hydrogen as (partial) replacement for natural gas (CH₄)
- Existing combustion equipment is usually not suited for H₂

Property	Methane	Hydrogen
Heating value (LHV, MJ/kg)	50	120
Density (kg/m ³)	0.657	0.089
Stoich. Air-Fuel Ratio (mol/mol)	9.5	2.38
Flame temperature (K)	2220	2380
Laminar burning velocity (m/s)	0.37	2.18 (2.84)
Flammability limit (fuel mol%)	5 – 15	4 – 75
Autoignition temperature (K)	~800	~850
Minimum ignition energy (mJ)	0.20	0.02
Diffusivity in air (cm ² /s)	0.21	0.76

At standard conditions

Flame properties

- High heat transfer rate
- High NO_x formation rate

- High power density
- Flame stabilization problems

Modes of combustion

Non-premixed flames

- Reactants are initially separated
- Diffusion/mixing controlled
- Relatively slow conversion
- High flame temperature: high NO_x emissions

Premixed flames

- Reactants are mixed before they enter the reaction zone
- Explosive mixture, propagating front
- Flame stability: Flashback
- Low pollutant emissions

Flame stretch theory

Impact of Lewis number on flame speed

Law (2006), Combustion Physics, Cambridge University Press Van Oijen et al. (2016) Prog. Energy Combust. Sci. 57:30-74

Premixed laminar flames

- Propagating reaction waves
- Laminar flame speed s_L
- Reaction-diffusion structure
- Large activation energy:
 - Thin reaction zone
 - Heat and mass diffusion zone

 Reaction rates are determined by burnt mixture

Premixed flame structure

Governing equations steady 1D case

$$\frac{d}{dx}(\rho u) = 0$$

$$\rho u \frac{dY}{dx} - \rho D \frac{d^2 Y}{dx^2} = -\omega$$

$$\rho u c_p \frac{dT}{dx} - \lambda \frac{d^2 T}{dx^2} = q_c \omega$$

Solution (preheat zone)

 $\rho u = m = \text{const}$ $T = T_u + (T_b - T_u) \exp(x/\delta_f)$ $Y = Y_u - Y_u \exp(\text{Le} x/\delta_f)$

Flame thickness: $\delta_f = \lambda/(mc_p)$ Lewis number: Le = $\lambda/(\rho Dc_p)$

Integral analysis

- Integrate governing equations from unburnt to burnt
- Diffusive fluxes are zero and $Y_{\rm b} = 0$

Flame stretch

 Classical definition: Fractional rate of change of area of flame surface element

$$K_A = \frac{1}{A} \frac{dA}{dt}$$

- Flow straining, flame curvature, flame motion
- De Goey & Ten Thije: Fractional rate of change of mass in flame volume element

$$K = \frac{1}{M} \frac{dM}{dt}$$

 Stretch rate defined in whole flame structure including preheat zone

Mass burning rate of stretched flames

Flame stretch has an impact on the burning velocity

Consider flat strained flame

$$\frac{d}{dx}(\rho u) = -\rho K$$
$$\frac{d}{dx}(\rho uY) = \rho D \frac{d^2 Y}{dx^2} - \omega - \rho KY$$

Integral analysis

$$\begin{split} m_{\rm b} - m_{\rm u} &= -\int \rho K \, dx \\ - m_{\rm u} Y_{\rm u} &= -\int \omega \, dx - \int \rho K Y \, dx \\ &= -m_{\rm b}^0 Y_{\rm u} - \int \rho K Y \, dx \end{split} \end{bmatrix} \qquad m_{\rm b} = m_{\rm b}^0 - \int \rho K (1 - Y/Y_{\rm u}) dx \\ \qquad \frac{m_{\rm b}}{m_{\rm b}^0} = 1 - \frac{1}{m_{\rm b}^0} \int \rho K \mathcal{Y} \, dx = 1 - \mathrm{Ka}$$

Karlovitz integral, Ka

Non-unity Lewis number effects

• Enthalpy profiles $h = q_c Y + c_p T$

Integrating enthalpy equation

$$m_{\rm b}h_{\rm b}-m_{\rm u}h_{\rm u}=-\int
ho Kh\,dx$$

Combining with continuity equation

$$h_{\rm b}-h_{\rm u}=-\frac{1}{m_{\rm b}}\int\rho K(h-h_{\rm u})\,dx$$

Le < 1 and
$$K > 0 \Longrightarrow h_b > h_u = h_b^0$$

 $\implies T_b > T_b^0$
 $\implies \omega > \omega^0$

Preferential diffusion effects

- In general, all species have different $Le_i \neq 1$
- Results in changes in element mass fractions ΔZ_i at the burnt side
- Affects the equilibrium composition at the burnt side $T_{\rm b}$, $Y_{i,{\rm b}}$
- And thus, the reaction rates ω and the mass consumption rate $m_b^0 = m_b^0(h_b, Z_{j,b})$
- Mass burning rate

 $m_{\rm b} = m_{\rm b}^0(h_{\rm b}, Z_{j,{\rm b}}) \left[1 - {\rm Ka}\right]$

- Linearized for weak stretch, $Ka \ll 1$

Comparison with simulations

Stretched CH₄-H₂-air flames

Markstein number

Cellular instabilities

- Density jump in flames causes hydrodynamic instability
- Direct flame stretch effect has stabilizing influence (Positive stretch decreases burning velocity)
- Preferential diffusion effects can counteract this (Ma < 1) (Positive stretch may even increase burning velocity)

M. Day, Lawrence Berkeley Nat. Lab

Flame stabilization

Impact of preferential diffusion effects

Flame stabilization on perforated plate burner

- Used in domestic heating systems
- Balance of flame speed s_L and gas mixture velocity u_g
- Flame flashback/blow off

'U/e

Lewis & von Elbe (1987) Combustion, Flames, and Explosions of Gases, Academic

Experiment

- Lean CH₄-H₂-air flames on multi-slot burner (Y. Shoshin)
- Fuel mixtures with same flame speed (s₁ = 10 cm/s)

- H₂ has much higher diffusivity than methane $(Le_{H_2} = 0.3 \text{ vs } Le_{CH_4} = 1)$
- Together with flame stretch and curvature this causes local enrichment: φ
- Resulting in local higher burning rate: $s_1 \uparrow$
- Affects stabilization a lot

Bluff body stabilized flames

- Experimental and numerical study of flames stabilized on cylindrical bluff body
- At fixed velocity u_g, equivalence ratio is decreased until blow-off occurs
- Anomalous blow-off limit behavior observed for mixtures with H₂

- Experiments by Y. Shoshin
- Simulations by F. Vance

Flame stabilisation: experiment vs simulation

- Three CH₄-H₂ fuel mixtures with equal flame speed, s_L = 10 cm/s
- Inlet velocity 1 m/s
- Comparison of Abel inverted CH* chemiluminescence (top) and computed heat release rate (bottom)
- Numerical results allow detailed quantitative analysis of stretch, heat loss and preferential diffusion effects

Vance et al. (2021) Combust. Flame, available online

Effect of Lewis number on lean limit flame

- Lean limit flames for 4 fuels with different Lewis number
- Inlet velocity 1 m/s
- Strong Le effects enhance stability of H₂ enriched flames: Neck formation
- Different blow-off mechanisms observed

Vance et al. (2019) Proc. Combust. Inst., 37:1663-1672

/e

H_2 -air flame shapes approaching lean limit (V = 1 m/s)

H₂-air lean limit flames

Hydrogen flame flashback

- Simulations of H₂-air flame on slot burner
- Decrease inlet velocity V_{in} at constant φ until flame flashes back
- Enhanced burning rate due to preferential diffusion effects, leads to early flashback

Vance et al. (2021) Combust. Flame, submitted

Normalized H₂

of limit flames at

different φ

Complex dynamics

- Unsteady simulation
- Flashback when velocity is lowered

Flamelet-Generated Manifolds for H₂ flames

27 Why hydrogen flames are different - J.A. van Oijen

Flamelet-Generated Manifold (FGM) method

- Reduced order modelling of chemistry
- Combination of low-dimensional manifold and flamelet approach
- Solutions of 1D flamelet equations are used to construct a manifold
- Chemical composition (Y_i, T) is parameterized by small number of control variables y_i
- Simplest form, 1D FGM, where y_1 is reaction progress variable

Van Oijen & De Goey (2000) Combust. Sci. Technol. 161:113-138 Van Oijen et al. (2016) Prog. Energy Combust. Sci. 57:30-74

Multi-dimensional FGM

- In 1D FGM, enthalpy and element mass fractions are fixed, but in most applications, this is not the case due to, e.g., heat loss, mixture stratification, dilution, etc.
- Additional manifold dimensions (parameters) are needed to account for the effect of these changes on chemistry
- For non-adiabatic effects, enthalpy is added as manifold coordinate
- Series of flamelet solutions for different enthalpy

$$Y_{i}(x, h_{b}) \longrightarrow Y_{i}(y_{1}, y_{2}) \qquad y_{1} = \mathcal{Y}, y_{2} = h$$

$$\int_{u^{10}} \int_{u^{10}} \int_{u^{10}$$

FGM for H₂ flames

- Strong preferential diffusion effects in H₂ flames cause changes in Z_i and h
- In principle all Z_i's and h should be added to the manifold as additional independent parameters
- For weak stretch, ΔZ_j 's and Δh are not independent but couple: One additional dimension is sufficient

Preferential diffusion effects in FGM

 In practice: Include a stretch term in flamelet equations and solve for a range of stretch rates K

 $Y_i(x, K) \longrightarrow Y_i(y_1, y_2)$

- This results in a 2D FGM parameterized by two control variables
 - Reaction progress variable
 - Element mass fraction

 $y_1 = \mathcal{Y}$ $y_2 = \mathcal{Z} = \frac{1}{2}Z_{\mathsf{C}} + Z_{\mathsf{H}}$

Preferential diffusion effects in FGM

- Preferential diffusion terms in equations for control variables need to be retained
- Linear combinations of species mass fractions $y = \sum \alpha_i Y_i$

$$\frac{\partial \rho y}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{y}) - \nabla \cdot \left(\frac{\lambda}{c_{\rho}} \nabla \boldsymbol{y}\right) = \nabla \cdot \left[\frac{\lambda}{c_{\rho}} \sum \alpha_{i} \left(\frac{1}{\mathsf{Le}_{i}} - 1\right) \nabla Y_{i}\right] + \omega_{y}$$

• Assuming $\nabla Y_i = c_i \nabla y$ (Local 1D FGM)

$$\frac{\partial \rho y}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} \boldsymbol{y}) - \nabla \cdot \left(\frac{\lambda}{c_{\rho}} \nabla \boldsymbol{y}\right) = \nabla \cdot (\mathcal{D} \nabla \boldsymbol{y}) + \omega_{\boldsymbol{y}}$$

New approach assuming constant Lewis numbers

$$\frac{\partial \rho y}{\partial t} + \nabla \cdot (\rho \boldsymbol{u} y) - \nabla \cdot \left(\frac{\lambda}{c_{\rho}} \nabla y\right) = \nabla \cdot \left(\frac{\lambda}{c_{\rho}} \nabla \beta\right) + \omega_{y}$$

$$\beta = \sum \alpha_i \left(\frac{1}{\mathsf{Le}_i} - 1\right) Y_i$$

Significant improvement for H₂ flames

Mukundakumar et al. (2021) Combust. Theory Model, online available

Validation of FGM against detailed chemistry

- 1D strained flames, CH_4 - H_2 -air (40% H_2 , $\varphi = 0.7$)
 - 1D FGM only account for direct stretch effect
 - 2D FGMs capture preferential diffusion effects
 - Not very sensitive to how the Z_j, h changes are included in the flamelets
 - 2D FGM A: stretched flat flamelets
 - 2D FGM B: stretched curved flamelets

Validation of FGM against detailed chemistry

Expanding flame kernel in turbulent flow

 $(CH_4-H_2-air, 40\% H_2, \varphi = 0.7)$

2D direct numerical simulation

Mass fraction of H radical at t = 0.36 ms

Turbulent flame

- Lean premixed turbulent flame on slot burner CH_4 - H_2 -air, 40% H_2 , $\varphi = 0.7$
- Direct numerical simulation

Snapshots of chemical source term

- More intense burning in convex regions
- Flame surface area/volume increases due to instabilities
- Turbulent flame speed increases by 30%!

Vreman et al. (2009) Int. J. Hydrogen Energy 34:2778-2788

ГU/е

Unsteady phenomena

Response to sudden jump in stretch rate

- Preferential diffusion effects are dampened in flames with fast fluctuating stretch rates
- Modelling challenge in unresolved simulations (LES/RANS)!
- DNS of highly turbulent flames required to gain insight and to develop models

• Time delay of $\tau_f = \delta_f / s_L$: High frequencies will be dampened

Other modeling challenges

Reactions occur at rather low temperature

 $\begin{array}{c} H_2 + O \longrightarrow OH + H \\ H_2 + OH \longrightarrow H_2O + H \end{array} \qquad \mbox{H production, 1400 K} \\ O_2 + H + M \longrightarrow HO_2 + M \qquad \mbox{H consumption, close to } \mathcal{T}_u \end{array}$

- Peak heat release rate at T < 1000 K
- Reaction layer of H₂ flame is not thin!

FGM challenge

- Reaction rates in H-consumption layer at the leading edge are sensitive to T_b (near the H-production layer)
- Non-local dependency: Source term depends on condition downstream
- Overprediction of source term when burnt side is cooled \rightarrow Too high flame speed, flashback

Why hydrogen flames are different

- High diffusivity of H₂ leads to strong preferential diffusion effects
- Response of lean H₂ flames to stretch is opposite to that of most common fuels

Lean hydrogen flames burn stronger when stretched

- Huge impact on flame dynamics and stabilization
 - Cellular instabilities
 - Increased flame surface density
 - Anomalous blow-off behavior
 - Prone to flashback due to enhanced burning rate near flame holder

COMBUSTION OF FUTURE FUELS

Enabling the energy transition

Thanks to all my colleagues at TU/e who participated in this research

EINDHOVEN UNIVERSITY OF TECHNOLOGY