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Zero Emission Lab vision
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• EU-funded Mission D+: emission-free, future-proof mobility for people & goods by 2050

2020 2025 2030 2050

-15%
-30%

-60%

-90%

100%

• Zero emission public transport
• Zero-emission zones in 30-40 larger cities for city logistics

• 1.9M electric vehicles
• 33% renewable energy in mobility

CO2,eq transport

-40%

1990

Climate neutrality
-49%
-55%?



Zero Emission Lab vision
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• ICE0.0

• Combination of ultra-efficient internal combustion engines and sustainable 
fuels is key to accelerate GHG emission reduction in heavy-duty transport

• Key scientific challenges:
• In-cylinder mixture formation
• Heat release shaping & control
• Fuel flexibility

0-impact 
GHG

emissions

0-impact 
pollutant 
emissions

• H2/NH3
• E- and advanced bio-fuels

• NOx & Soot
• UHC & CO



Zero Emission Lab vision
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ZELab video (1 minute):
https://youtu.be/0gPnS3tnnLQ
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https://youtu.be/0gPnS3tnnLQ


Zero Emission Laboratory (ZEL)
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Fundamental nature of research

Ultra clean engine concepts o
CO2 neutral fuels o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

Unique setups (even on a global scale)
leading to unprecedented research capabilities!

o

o

o

o

o



Zero Emission Laboratory (ZEL)

Lubricity, stability, & elemental composition testing
- Prior to engine tests

- Limited batch sizes & preventing damage
- Insight in applicability/usability

Mechanical Engineering, Power & Flow8

CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Hatz engine
Generator engine with emission and in-cylinder pressure analysis
Robust, cheap, fuel-flexible DI CI commercial setup

New: 3 Hatz engines on moving frames for BSc students

Mechanical Engineering, Power & Flow9

CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Paccar MX13 single-cylinder (RCCI capable) engine
Reactivity Controlled Compression Ignition
Ultra clean & fuel flexible with fuels that inherently prevent soot formation!
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New Concept

Hot burning soot Chemiluminescence

Classical Concept

Ultra clean engine concepts o
CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Paccar MX13 single-cylinder (RCCI capable) engine 
Reactivity Controlled Compression Ignition

Low emissions with combustion phasing control!
- Change high/low octane fuel ratio
- Timing of the DI low octane fuel

Mechanical Engineering, Power & Flow11

Hi-octane fuel

Low-octane fuel
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Ultra clean engine concepts o
CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Eindhoven High-Pressure Cell (EHPC)
Pre-burn of lean charge of C2H2, Ar, N2, and O2 – sequential fill!
Relatively long cool down 
Diesel surrogate fuel injection
Engine-like conditions:
- Densities up to 40 kg/m3 (350 bar)
- Peak temperatures up to 2000 K
- O2 from 0 to 35 vol-%

Ø100 mm optical access – ~1.3 L

Mechanical Engineering, Power & Flow12
Ultra clean engine concepts o
CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Eindhoven High-Pressure Cell

Visualization of
- Liquid/vapor-phase fuel
- Species distributions
- Soot (precursors)
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Zero Emission Laboratory (ZEL)

Combustion Research Unit (CRU):
Commercial ignition quality tester
Constant volume chamber ~0.4 L, pre-heating and compressed gases
Engine-like conditions:
- Pressures up to 60 bar
- Peak temperatures up to 1050 K
- O2 from 0 to 21 vol-%
Robust, fuel-flexible commercial setup for analyzing heat-release
Optional optical access through borescope
Equipped with dual-circuit heavy-fuel oil injector

Mechanical Engineering, Power & Flow14

CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Eindhoven Low-Pressure Cell (ELPC)
Constant volume chamber ~1 L
- Filled with compressed gases (N2, He, Ar)
- Pressures up to 50 bar
- Mostly used for hydrogen research – fuel pressure up to 100 bar
- Full optical access
- Mach-disk formation, mixing, & penetration studies

Mechanical Engineering, Power & Flow15

CO2 neutral fuels o



Zero Emission Laboratory (ZEL)

Atmospheric momentum exchange setup
- Essential parameters for modeling fuel injections!
- Syringe pump: momentum & mass flow up to 200 MPa
- Currently in use for H2 injections (starting with He)

- Up to 200 bar gas bottle pressure

Mechanical Engineering, Power & Flow16

CO2 neutral fuels o



Proteus “ICE H2.0”

• Base engine: 1-cylinder, 2L CI
• Proteus Ricardo base
• DAF MX13 liner, piston, & head
• Extended piston “Bowditch”  Optical access
• Quartz/sapphire piston
• Adjustable CR
• Flexible skip-firing

Mechanical Engineering, Power & Flow17



SmartCHP: Yu Wang  PhD defended 28th of May!
Using Fast-Pyrolysis Bio-oils in engines

ZEL project/ACD-call (DAF, Shell, TNO, PNB): Stan Latten
(Re)building an optical H2-ICE

APC (vici prof. v. Oijen): Max Peters
Hydrogen jets

CSC (future fuels): Zhoncheng Sun
Biofuels & oxymethylene ethers

Recent & current work

Mechanical Engineering, Power & Flow18



Technical goals:
• Small-scale: 100 to 1000 kWe
• Heat-to-power ratio: 1:1 to 10:1
• Overall CHP efficiency > 85%
• GHG emission reduction > 80%

SmartCHP (Yu Wang)

Mechanical Engineering, Power & Flow19

Yu Wang, “Direct application of fast pyrolysis bio-oil in combined heat and 
power”, PhD thesis, TU/e, 2024.



FPBO properties (compared to diesel)
• High viscosity (×15)
• Low energy density (~37%)
• High oxygen and water content 
• Impurity particles
• Strong acidity
Challenges in engine application:
• Unknown ignition & combustion characteristics 
• Corrosivity, nozzle clogging, poor ignitability

SmartCHP (Yu Wang)

Mechanical Engineering, Power & Flow20

FPBO Diesel



SmartCHP (Yu Wang)
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• Ignition
• Combustion
• Fuel recipe

Engine

CVCC

Modeling

• Ignition
• Fuel composition

• Durability
• Emission
• Efficiency

Fundamental research ➞ Engineering practice



Natural luminosity (soot) of diesel & neat FPBO at 300 bar Pinj
• Nozzle clogging
• Poor atomization
• Shorter burn duration

SmartCHP (Yu Wang)
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Diesel FPBO Inj. #13 FPBO Inj. #16

Heat release rate

Wang, et al. "Spray combustion of fast-pyrolysis bio-oils under engine-like 
conditions." Energy Conv. Management: X 20 (2023): 100433.



SmartCHP (Yu Wang)
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Neat FPBO at 300-bar Pinj
• Nozzle clogging
• Poor atomization
• Shorter burn duration

Neat FPBO at 900-bar Pinj
• Improved nozzle durability
• Improved atomization

FPBO with addition of 30% EOH
• Further improved atomization
• Reduced sooting tendency
• Slightly shortened ignition delay

Wang, et al. "Spray combustion of fast-pyrolysis bio-oils under engine-like 
conditions." Energy Conv. Management: X 20 (2023): 100433.



SmartCHP (Yu Wang)
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Two-stage Lagrangian model
• Simulates mixing-limited spray combustion

• Minimalistic flow model (1D entrainment model)
• 2 perfectly stirred reactors with transport
• Detailed chemistry

Multiple-step ignition process
• Transport between spray core and periphery regions
• Validated at Spray A conditions
• Powerful tool to investigate spray ignition processes!
Application to FPBO and blends
• High Tamb is required (>1000 K)
• Ethanol addition promotes the 2nd-stage ignition

Wang, et al. "Evaluation of fuel spray ignition delay behavior using a two-
stage Lagrangian model." Combustion and Flame 265 (2024): 113449.



SmartCHP (Yu Wang)
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Dedicated engine modifications
• Intake preheating & elevated CR
• Fuel switching & dual-circuit injection system
• Unattended engine operation system
500-hour durability test 
• For the first time ever in the world

Efficiencies & emissions
• Improved ηNIE due to faster burning rate
• Lower NOx but higher CO than diesel

Wang, et al. “Application of fast pyrolysis bio-oil in a genset engine for 
combined heat and power generation.“, under review.



ZEL project (Stan latten): rebuilding optical ICE H2.0
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ZEL project (Stan latten): rebuilding optical ICE H2.0
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200-40
bar Resato

H2 booster

0-700 bar
High-pressure
Type IV buffer

40 bar

H2

0-40 bar

H2 – DI
Injector

H2 – PFI
Injector

Resato B-series booster datasheet

Gas storage       Engine cell

• 200 bar H2 pack, reduced to 40 bar before entering lab
• In engine cell further reduced to ~7 bar for PFI operation
• For DI: reducer set to 40 bar to feed H2 booster
• Up to 700 bar achievable for H2-DI applications
• Just 3 bar H2 inlet pressure required for booster  allows for

emptying H2 pack!

Pressure
Reducer

Pressure
Reducer



ZEL project (Stan latten): rebuilding optical ICE H2.0
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Phase Strategy Diesel fuel H2 fuel Ignition method Compression ratio

1 Diesel Yes No Compression Ignition High

2 Diesel-H2 DF Yes Yes, various quantities PFI Compression Ignition Low/High

3 H2 PFI SI No Yes, through PFI Spark Ignition Low

4 H2 LPDI SI No Yes, through early DI (partially premixed) Spark Ignition Medium

5 H2 HPDI SI No Yes, through late DI (diffusion flame) Turbulent Jet / prechamber assisted spark-ignition High

Output parameters:
• Efficiency
• NOx (and CO, CO2, HC, PM) emissions
• Mixing / flame evolution

Stepwise approach ↓ Input parameters:
• Injection mode (PFI/DI)
• Ignition mode (CI, SI, TJI)
• Boost pressure / temperature
• Load point (IMEP/RPM)
• Diesel/H2 ratio
• EGR rate
• Etc.



ZEL project (Stan latten): rebuilding optical ICE H2.0

• H2: lower minimum spark energy than gasoline
• In some ignition systems, residual energy may remain after spark
• Additional, low-energy spark during exhaust / intake stroke
• Spark breakdown voltage scales with pressure

• Spark energy too low to ignite gasoline, but will ignite H2!
• Ignition system without residual energy required!

Mechanical Engineering, Power and Flow30



ZEL project (Stan latten): rebuilding optical ICE H2.0

• Transistor Controlled Ignition (TCI)
• Conventional method (contact-breakers)
• Energy stored in coil (as magnetic field)
• Charges while switch is closed, discharges upon opening
• Residual energy may remain after spark extinguishes!

• Capacitor Discharge Ignition (CDI)
• Supply voltage boosted to 400V
• Energy stored in capacitor (as electric field)
• Charges continuously, discharges upon closing switch
• No residual energy after switch opening!

Mechanical Engineering, Power and Flow31

DC
DC

Both schematics are highly simplified!



ZEL project (Stan latten): rebuilding optical ICE H2.0

• EGR control
• Skip-firing makes conventional EGR impossible
• Exhaust gases are diluted by intake air
• Solution: simulated EGR by pre-mixing air, N2, and H2O using mass flow controllers

• EGR measurements
• H2 combustion  No CO2 formation
• Using O2 concentration instead
• Wideband O2 sensors in intake + exhaust (verified by IAG/Horiba emission analyzer)

Mechanical Engineering, Power and Flow32



Argon Power Cycle (Max Peters)
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Ar

Mechanical 
power

Electricity

+ H2O

Ar

H2 O2 Use argon (Ar) instead of air (N2)
Affordable, non-toxic gas
Recirculate in closed loop
Monoatomic: Theor. Efficiency 55% → 80%
Only water formed
Free of NOx emissions

Revolutionary power cycle

Air (O2+N2) Exhaust + NOx

H2O

Condenser

APC enables: 
 Pollution free power production
 Cost effective H2 energy storage/utilization

compression ignition (CI)

Fuel directly injected into 
pressurized chamber (DI)

“traditional situation”



Cut-out from injector

Max Peters: APC & high-pressure H2 jets

Resolution: 0.87 µm/pixel
Frame rate: 100 kHz

35

Needle lift measurement

Additional measurement credits Vincent Fontijn



Final geometry

Max Peters: APC & high-pressure H2 jets36
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Current profile

Conclusion:
Smallest flow area around needle due to small lift!

+ Experiments validated with Laser Doppler Vibrometer!

Additional measurement credits Vincent Fontijn



Max Peters: APC & high-pressure H2 jets

Line ‘shadow’: 95% confidence 
interval
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Empirical jet penetration:
N2:       𝑥𝑥 𝑡𝑡 = 16,37 ⋅ 𝑛𝑛𝑛𝑛𝑅𝑅0,52 ⋅ 𝑡𝑡0,5 − 3,65
Argon:  𝑥𝑥 𝑡𝑡 = 13,31 ⋅ 𝑛𝑛𝑛𝑛𝑅𝑅0,58 ⋅ 𝑡𝑡0,5 − 4,3838

Schlieren: jet penetration

Conventional N2 measurements N2 vs Ar



Barrel shock & Mach disk

Max Peters: APC & high-pressure H2 jets39

𝑑𝑑𝑒𝑒 = 0.65 𝑚𝑚𝑚𝑚

7.5 mm

Barrel shock are small! 
(max. ~5 ⋅ 𝑑𝑑𝑒𝑒)

At very high nPR

nPR = 50 nPR = 20



Rayleigh scattering

Max Peters: APC & high-pressure H2 jets

Rayleigh scattering inside the jet:
𝐼𝐼𝑅𝑅,𝑗𝑗 = 𝜂𝜂𝐼𝐼𝑙𝑙𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋𝑓𝑓𝜎𝜎𝑓𝑓 + 𝑋𝑋𝑎𝑎𝜎𝜎𝑎𝑎

Rayleigh scattering outside of the jet:
𝐼𝐼𝑅𝑅,𝑎𝑎 = 𝜂𝜂𝐼𝐼𝑙𝑙𝑁𝑁𝑎𝑎,0𝜎𝜎𝑎𝑎

Both of them inside a single shot!

𝐼𝐼𝑅𝑅,𝑗𝑗
𝐼𝐼𝑅𝑅,𝑎𝑎

=
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

𝑋𝑋𝑓𝑓𝜎𝜎𝑓𝑓
𝜎𝜎𝑎𝑎

+(1−𝑋𝑋𝑓𝑓)

𝑁𝑁𝑎𝑎,0

𝑋𝑋𝑓𝑓 =

𝐼𝐼𝑅𝑅,𝑗𝑗
𝐼𝐼𝑅𝑅,𝑎𝑎

⋅
𝑁𝑁𝑎𝑎,0
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

⋅ −1
𝜎𝜎𝑓𝑓
𝜎𝜎𝑎𝑎

− 1

What do we need?
𝜎𝜎𝑓𝑓
𝜎𝜎𝑎𝑎

(Rayleigh cross section for H2 and ambient)

𝑁𝑁𝑎𝑎,0
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

(density field inside the jet)

Tsujimura [2003] & 
Ewan and Moody [1986]

for number density

𝑝𝑝𝑀𝑀𝑀𝑀 = 𝑝𝑝𝑎𝑎
𝑇𝑇𝑀𝑀𝑀𝑀 = ~𝑇𝑇0 = 𝑇𝑇𝑎𝑎

Assumed: 𝑁𝑁𝑎𝑎,0
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

= 1
Outside of shock 

barrel (small)

Rayleigh cross section 𝜎𝜎𝑚𝑚 [10−27𝑐𝑐𝑚𝑚2] at 532 nm.

𝑁𝑁2 𝐴𝐴𝐴𝐴 𝐻𝐻2 𝑛𝑛 − ℎ𝑒𝑒𝑝𝑝𝑡𝑡𝑒𝑒𝑛𝑛𝑒𝑒

5.23 4.56 1.13 309.8

After MD purely dependent 
on Rayleigh cross sections:

𝑋𝑋𝑓𝑓 =

𝐼𝐼𝑅𝑅,𝑗𝑗
𝐼𝐼𝑅𝑅,𝑎𝑎

− 1
𝜎𝜎𝑓𝑓
𝜎𝜎𝑎𝑎

− 1

40

Reduced signal in the H2 jet vs. ambient!



Experimental setup

Max Peters: APC & high-pressure H2 jets41
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Max Peters: APC & high-pressure H2 jets42

Result: Image - ‘Vacuum’ image 
@ 0,03 bar (for flare correction)

100 bar H2 in 10 bar N2

Laser direction



Max Peters: APC & high-pressure H2 jets

1D row interpolation
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at 0.4 ms
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Max Peters: APC & high-pressure H2 jets44



Argon Power Cycle

Mechanical Engineering, Power and Flow45

Next: combustion!

Tcore ≠ Tbulk

High-speed 50-µm bare-wire TC
measurements for core T

Schlieren         OH* Chemiluminescence

N2

Ar

Additional measurement credits Steef Licher



Argon Power Cycle

Mechanical Engineering, Power and Flow46

Target: 22.8 kg/m3 & 900 K @ inj., peak 2000 K  50% of the C2H2 in Ar!

Additional measurement credits Steef Licher



Argon Power Cycle – non-reacting, high temperature

Mechanical Engineering, Power and Flow47

Target

Additional measurement credits Giliam van der Wielen
4
7

100 bar H2 in 433 K, 20 bar, 0% O2 ambient

100 bar H2 in 1200 K, 40 bar, 0% O2 ambient

Frame In-In-1

Frame In-In-1

Additional measurement credits Giliam van der Wielen



Argon Power Cycle – reacting conditions

4
8

100 bar H2 in ~1000 K, 40 bar, 15% O2 ambient

100 bar H2 in ~1600 K, 40 bar, 15% O2 ambient

Frame In-In-1

Frame In-In-1

Additional measurement credits Giliam van der Wielen



Argon Power Cycle – reacting conditions

100 bar H2 in ~1200 K, 40 bar, 15% O2 ambient

OH*

OH* top view
Schlieren side view

Additional measurement credits Giliam van der Wielen



Argon Power Cycle

Mechanical Engineering, Power and Flow50

Some true-color recordings

Additional measurement credits Giliam van der Wielen



Zhongcheng Sun

Mechanical engineering, Power & Flow group

Renewable “drop-in” fuel research by Zhongcheng Sun
(GTL  GTLB30  OMEn) 

OME5

OME4

OME3• From short- to long-term solutions

• Gas to liquid (GTL)

• GTL blends with 30 vol% FAME (GTLB30) 

• Oxymethylene dimethyl ether (OMEn)
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Background

• GTL: EN 15940 compliant, higher CN, negligible sulfur & aromatics
• Note: similar properties as HVO/HEFA  can be regarded as “XTL”

• OMEn: no C-C bonds, high oxygen content, & high CN

Density 
[kg/m3] 

CN 
[-]

LHV
[MJ/kg]

Viscosity 
[mm2/s]

Flash Point
[℃]

Freezing point
[℃]

Oxygen mass% 
[-]

(A/F)st ratio
[-]

OMEx
* 1067.1 82.2 19.4 1.18 64.5 -20.5 48.01 5.84

GTL 777.1 74 44 2.58 72 -19 0 14.98

GTLB30 808.3 65.8 42 2.97 66 -23 3.2 14.24

Diesel 836.1 52.2 43 2.76 66 -24 0.60 14.46

* OMEx (47.65% OME3, 29.7% OME4, 16.98% OME5, 5.67% OME6)

MX 13 Parameter

Number of cylinder 1

Displaced volume 2.15 L (single)

Bore 130 mm

Stroke 162 mm

Compression ratio 17.2

Piston bowl shape Double step

Cylinder head Low swirl

MX13 specification
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GTL & GTLB30 engine research

(Above max.)

(Above max.)

• Both GTL & GTLB30 illustrate potential in improving the PM-NOx trade-off

• NOx emissions impact on weighted average across the engine map:

• GTL ↓ 16.1% & GTLB30 ↑8.3%

• Potential EGR optimization strategy for minimizing NOx while adhering to 

Euro VI PM limits for both GTL & GTLB30

• Drop-in optimization means different EGR calibration!

Additional measurement credits Shriram Jagannathan 
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OMEx optimized research on heavy-duty engine 

B30

A30

B50

B70

A70

Diesel emissions

0.010
Euro VI

A50

NOx (g/kWh)

• OME = expensive, how much do you need? If you have x amount, fuel one or fuel many?

• Case selection: commercial B7 diesel worst emissions @ B30 (1425 RPM, 30% load)

• Design of Experiments (DOE) approach to provide a comprehensive global emissions map [1]

[1] Andersson Oivind. John Wiley & Sons, 2012. Additional measurement credits Harold van Beers 
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Comprehensive emissions map @B30 
• Soot emissions ∝ to OMEx% in blends

• OMEx: slightly negative effect on NOx emissions

• Significantly mitigated with increasing EGR!

• CO effectively reduced with OMEx addition

• MX13 @ B30: EUV NOx & EUVI PM compliant when

• OMEx >40% 

• EGR >37.2%

• MX13 @ B30: EUVI with SCR & DOC compliant when

• OMEx >12.5%

• EGR >29%
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OMEx ignition research on CRU (15 O2%)
• @ 750 K, two noticeable ROHR peaks (LTHR & HTHR) of pure OMEx

leads to a longer burn duration [2]

• 800 K as a transition point for blends (different combustion regime)

• ROHR peak first increases with T, and then reduces (∝ BD)

• @ 850 K, now OME has the shortest burn duration

[2] Bunting, B.G., Wildman, C.B. International Journal of Engine Research, 2007. 

( Pinj = 150 MPa, O2 =15% )

EOI

EOI

EOI

premixed

premixed

premixed

mixing-limited
EOI

LTHR

Increasing OMEx
fraction

Additional measurement credits Robert Coolen
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OMEx ignition research on CRU (O2% impact)
• At lower O2% (high EGR to simultaneously reduce NOx)

• Modest impact on OMEx ID & burn duration 

(high fuel-oxygen content)

( Pinj = 150 MPa, Tc =850 K )

Increasing OMEx
fraction

Additional measurement credits Robert Coolen
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Optical diagnostics: natural luminosity (NL) imaging
• NL signal of OMEx occurs earlier (1 ms < 2.25 ms)

• NL intensity of OMEx much lower 

(chemiluminescence vs soot radiation)

• Diesel NL peak ~ combustion recession timing of OMEx

OMEx natural luminosity characteristics

• Spatially integrated NL peak of OMEx occurs before diesel

• With increasing Pinj

• OME SINL increases (more fuel)

• Diesel SINL decreases (less soot, net)

Pinj ↑

x2500
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OME – Methanol dual-fuel/RCCI

Collaboration w. Peter de Vos (Delft), graduation project work Joel Arendsen

Idea pitch: potential future on-board production of OME out of MeOH

Dual-fual/RCCI operation with minimal OME

OME @ 30% load, but A70 conditions

• Adding methanol in steps using PFI

• Extending load up to 59%

(reaching max (PRR))

• Small additional extension to 61% with a

7% pilot injection

• 1.5% GIE improvement with dual fuel

Conventional diesel

Conventional diesel

Dual fuel w. pilot

Dual fuel

Dual fuel



Numerical simulations

CFD
• LES
• RANS

Combustion Model
• FGM

Software
• OpenFOAM
• Converge 

Mechanical Engineering, Power & Flow61

DME/Methanol RCCI in HD engine



Numerical simulations

CFD
• LES
• RANS

Combustion Model
• FGM

Software
• OpenFOAM
• Converge 

Mechanical Engineering, Power & Flow62

LES of spray A (combustion in the EHPC)
n-dodecane
formaldehyde
carbondioxide



Zero Emission Laboratory (ZEL)

Eindhoven High-Pressure Cell

Visualization of
- Liquid/vapor-phase fuel
- Species distributions
- Soot (precursors)

Mechanical Engineering, Power & Flow63

Birth and senescence of a spray

The Life of a Spray6
3

Liquid fuel 

Fuel vapor

Low-temperature
chemistry

Single-orifice
injector

High-temperature 
diffusion flame periphery

Diesel engine conditions:
630 °C
60 bar

10 mm

Hot thermocouple
wires

Wall interaction

Questions?
n.c.j.maes@tue.nl
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