Internal Combustion Engines research in the TU/e Zero Emission Laboratory

Noud Maes

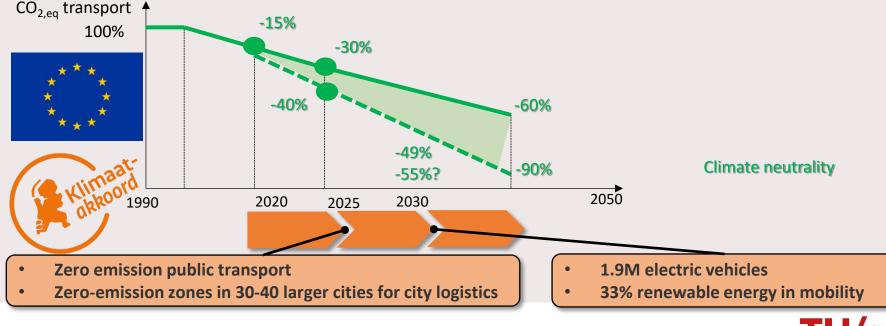
Mechanical Engineering, Power & Flow

Content

Zero Emission Laboratory

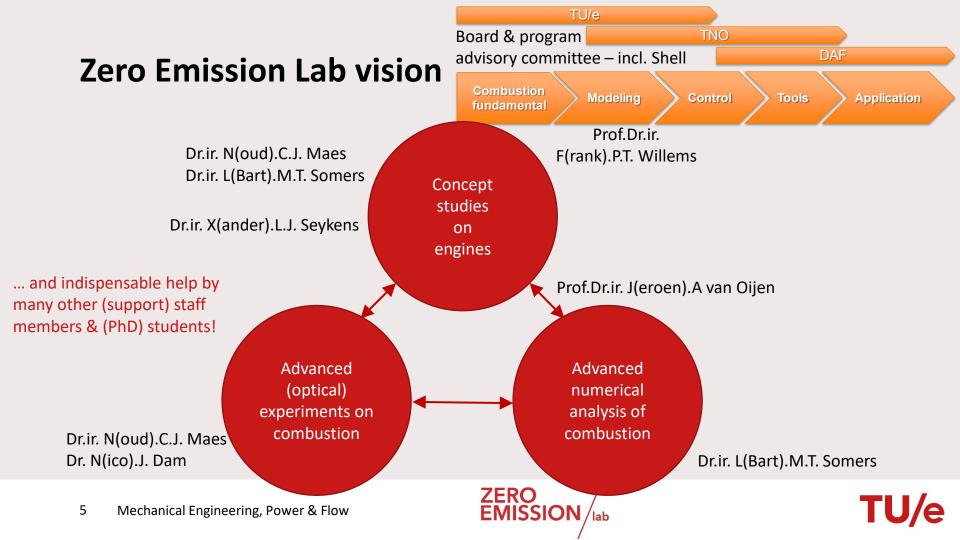
- Vision & organization
- Setups

Recent & current work

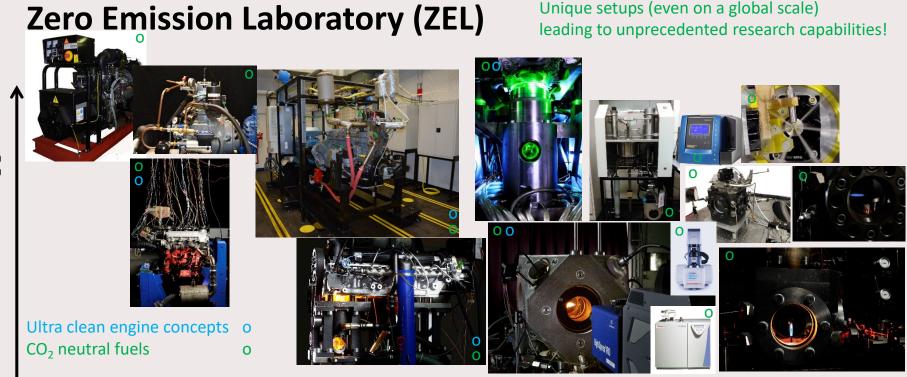

Quick reference to CFD

Zero Emission Lab vision

• EU-funded Mission D+: emission-free, future-proof mobility for people & goods by 2050


Zero Emission Lab vision

ICE0.0 ۲



- E- and advanced bio-fuels ٠
- - UHC & CO
- **Combination of ultra-efficient internal combustion engines and sustainable** • fuels is key to accelerate GHG emission reduction in heavy-duty transport
- Key scientific challenges: •
 - In-cylinder mixture formation
 - Heat release shaping & control •
 - Fuel flexibility •
- Mechanical Engineering, Power & Flow 4

Fundamental nature of research

Lubricity, stability, & elemental composition testing

- Prior to engine tests
 - Limited batch sizes & preventing damage
 - Insight in applicability/usability

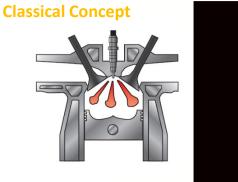
CO₂ neutral fuels

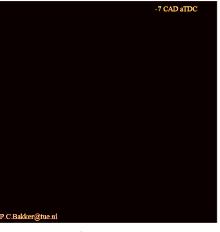
0

Hatz engine Generator engine with emission and in-cylinder pressure analysis Robust, cheap, fuel-flexible DI CI commercial setup

<u>New</u>: 3 Hatz engines on moving frames for BSc students

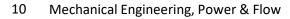
CO₂ neutral fuels




9 Mechanical Engineering, Power & Flow

Paccar MX13 single-cylinder (RCCI capable) engine Reactivity Controlled Compression Ignition Ultra clean & fuel flexible with fuels that inherently prevent soot formation!

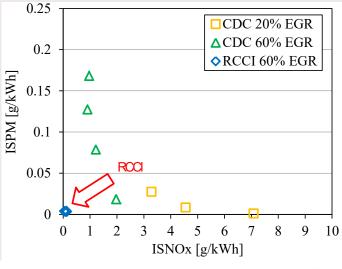
Hot burning soot



Chemiluminescence

New Concept

Ultra clean engine concepts o CO₂ neutral fuels o

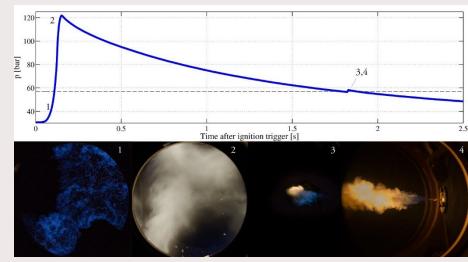


Paccar MX13 single-cylinder (RCCI capable) engine Reactivity Controlled Compression Ignition

Low emissions with combustion phasing control!

- Change high/low octane fuel ratio
- Timing of the DI low octane fuel

Ultra clean engine concepts o CO₂ neutral fuels o

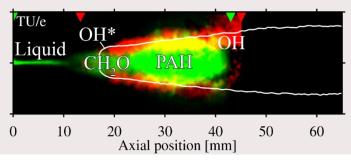

Eindhoven High-Pressure Cell (EHPC)

Pre-burn of lean charge of C_2H_2 , Ar, N_2 , and O_2 – sequential fill!

Relatively long cool down Diesel surrogate fuel injection Engine-like conditions:

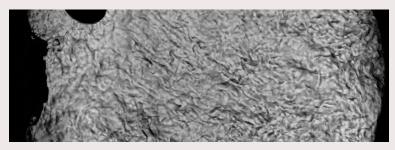
- Densities up to 40 kg/m³ (350 bar)
- Peak temperatures up to 2000 K
- O_2 from 0 to 35 vol-%

Ø100 mm optical access – ~1.3 L



 Ultra clean engine conceptsoCO2 neutral fuelso

Eindhoven High-Pressure Cell


Visualization of

- Liquid/vapor-phase fuel
- Species distributions
- Soot (precursors)

Combustion Research Unit (CRU):

Commercial ignition quality tester

Constant volume chamber ~0.4 L, pre-heating and compressed gases Engine-like conditions:

- Pressures up to 60 bar
- Peak temperatures up to 1050 K
- O_2 from 0 to 21 vol-%

Robust, fuel-flexible commercial setup for analyzing heat-release Optional optical access through borescope Equipped with dual-circuit heavy-fuel oil injector

CO₂ neutral fuels

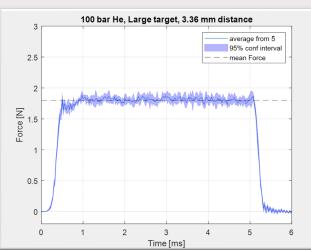
Eindhoven Low-Pressure Cell (ELPC) Constant volume chamber ~1 L

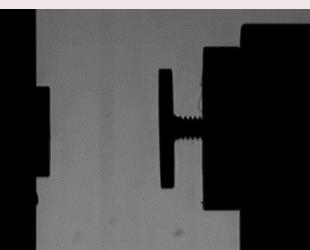
- Filled with compressed gases (N₂, He, Ar)
- Pressures up to 50 bar

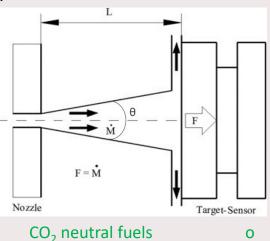
- EL)e, Ar)
- Mostly used for hydrogen research fuel pressure up to 100 bar

ZERO

ISSION


- Full optical access
- Mach-disk formation, mixing, & penetration studies



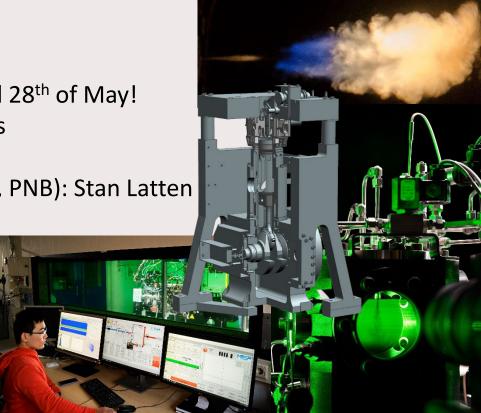


Atmospheric momentum exchange setup

- Essential parameters for modeling fuel injections!
- Syringe pump: momentum & mass flow up to 200 MPa
- Currently in use for H₂ injections (starting with He)
 - Up to 200 bar gas bottle pressure

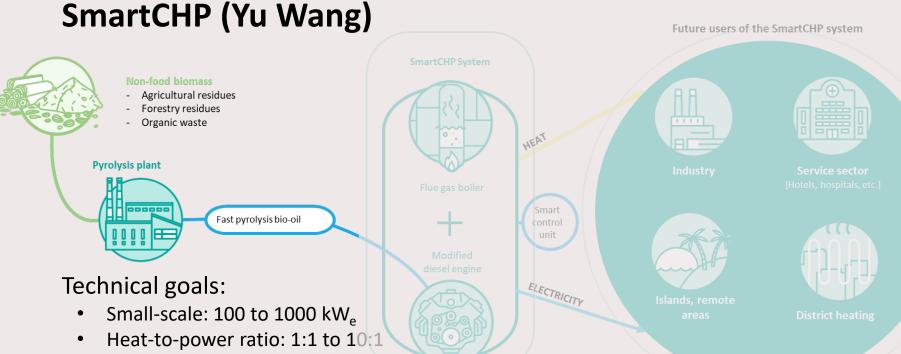
Proteus "ICE H2.0"

- Base engine: 1-cylinder, 2L Cl
 - Proteus Ricardo base
 - DAF MX13 liner, piston, & head
 - Extended piston "Bowditch" → Optical access
 - Quartz/sapphire piston
 - Adjustable CR
 - Flexible skip-firing


Recent & current work

SmartCHP: Yu Wang → PhD defended 28th of May! Using Fast-Pyrolysis Bio-oils in engines

ZEL project/ACD-call (DAF, Shell, TNO, PNB): Stan Latten (Re)building an optical H2-ICE


APC (vici prof. v. Oijen): Max Peters Hydrogen jets

CSC (future fuels): Zhoncheng Sun Biofuels & oxymethylene ethers

Yu Wang, "Direct application of fast pyrolysis bio-oil in combined heat and power", PhD thesis, TU/e, 2024.

- Overall CHP efficiency > 85%
- GHG emission reduction > 80%

FPBO properties (compared to diesel)

- High viscosity (×15)
- Low energy density (~37%)
- High oxygen and water content
- Impurity particles
- Strong acidity

Challenges in engine application:

- Unknown ignition & combustion characteristics
- Corrosivity, nozzle clogging, poor ignitability

FPBO

Diesel

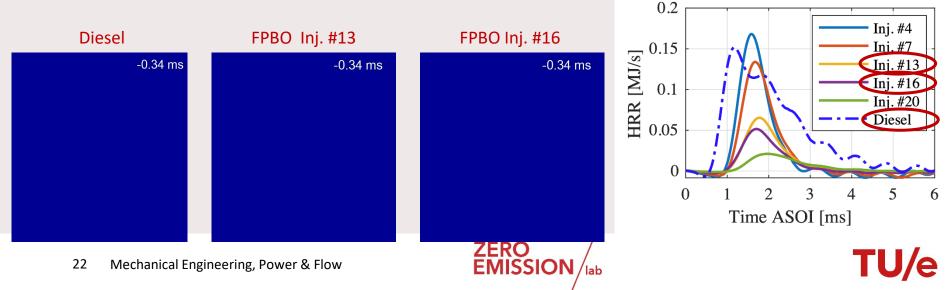
PAH

Ambient gas

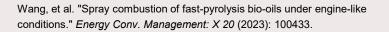
FLOL

Nozzle

Ċ –


- Ignition
- Combustion
- Fuel recipe

Fundamental research → Engineering practice

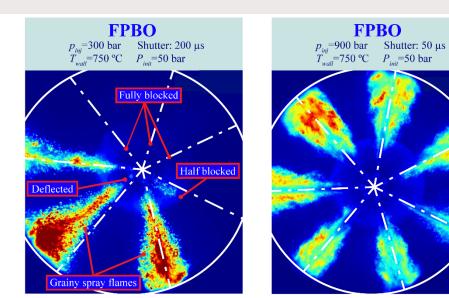

CVCC Durability ٠ Emission ٠ Engine Efficiency ٠ Fuel switching system FPBO storage Tank (50 L) 3 tanks (10 L) Modeling Ignition . Soot **Fuel composition** ٠ Emission Engine control & data Engine analyzer acquisition system Core reactor (CORE) †m. TU/e Flame-sheet ower & Flow eactor (FLAM † m

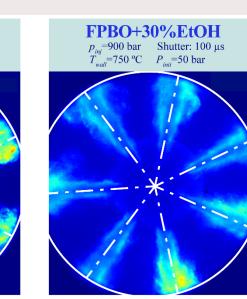
Natural luminosity (soot) of diesel & neat FPBO at 300 bar P_{ini}

- Nozzle clogging
- Poor atomization
- Shorter burn duration

Heat release rate

Neat FPBO at 300-bar P_{ini}


- Nozzle clogging
- Poor atomization
- Shorter burn duration


Neat FPBO at 900-bar P_{ini}

- Improved nozzle durability
- Improved atomization

FPBO with addition of 30% EOH

- Further improved atomization
- Reduced sooting tendency
- Slightly shortened ignition delay

Wang, et al. "Spray combustion of fast-pyrolysis bio-oils under engine-like

conditions." Energy Conv. Management: X 20 (2023): 100433.

TU/e

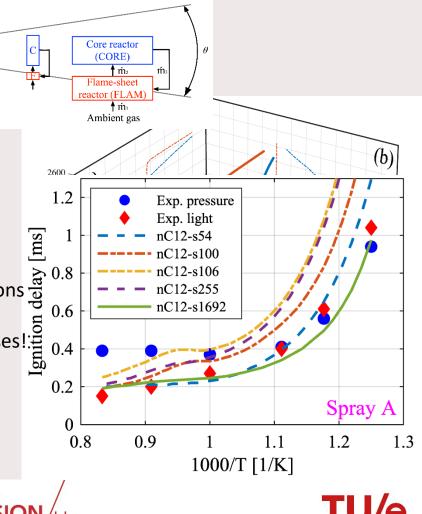
Two-stage Lagrangian model

- Simulates mixing-limited spray combustion
 - Minimalistic flow model (1D entrainment model)
 - 2 perfectly stirred reactors with transport
 - Detailed chemistry

Multiple-step ignition process

Transport between spray core and periphery regions $\frac{2}{29}$ 0.8

FLOL

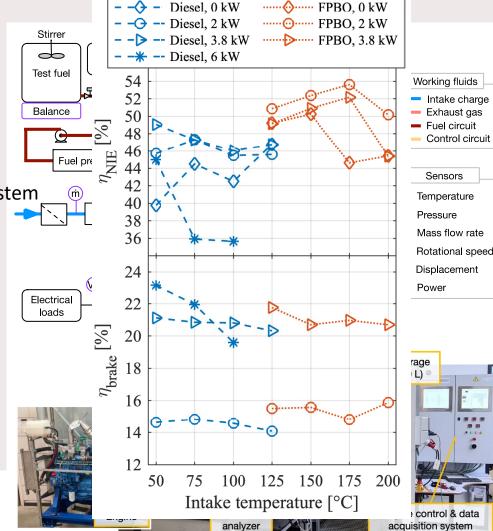

ZERO

und

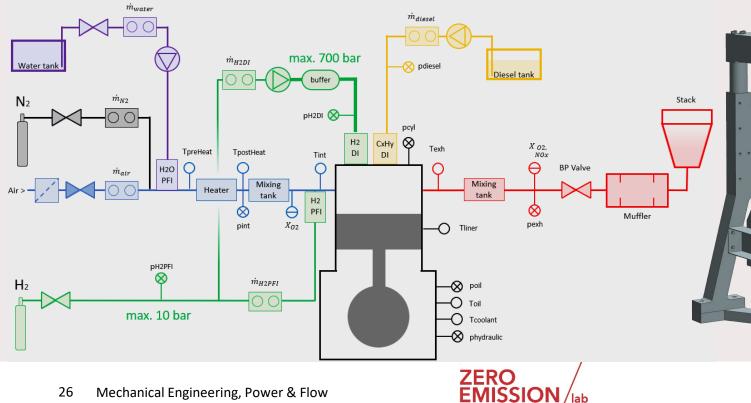
Nozzle

- Validated at Spray A conditions •
- Validated at Spray A conditions Powerful tool to investigate spray ignition processes plication to FPBO and blends Application to FPBO and blends
- High T_{amb} is required (>1000 K)
- Ethanol addition promotes the 2nd-stage ignition •

Wang, et al. "Evaluation of fuel spray ignition delay behavior using a twostage Lagrangian model." Combustion and Flame 265 (2024): 113449.

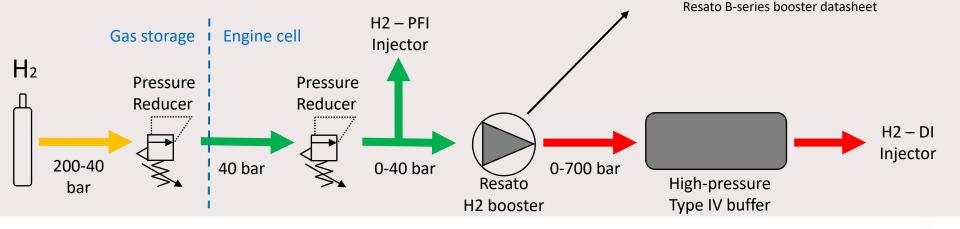

Dedicated engine modifications

- Intake preheating & elevated CR
- Fuel switching & dual-circuit injection system
- Unattended engine operation system 500-hour durability test
- For the first time ever in the world


Efficiencies & emissions

- Improved η_{NIE} due to faster burning rate
- Lower NO_x but higher CO than diesel

Wang, et al. "Application of fast pyrolysis bio-oil in a genset engine for combined heat and power generation.", *under review*.

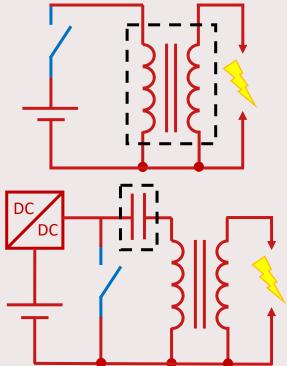

/lab

- 200 bar H₂ pack, reduced to 40 bar before entering lab
- In engine cell further reduced to \sim 7 bar for PFI operation
- For DI: reducer set to 40 bar to feed H₂ booster
- Up to 700 bar achievable for H₂-DI applications
- Just 3 bar H₂ inlet pressure required for booster → allows for emptying H₂ pack!

Stepwise approach \downarrow

Input parameters:

- Injection mode (PFI/DI) •
- Ignition mode (CI, SI, TJI) •
- Boost pressure / temperature Mixing / flame evolution •
- Load point (IMEP/RPM) •
- Diesel/H₂ ratio
- EGR rate
- Etc.

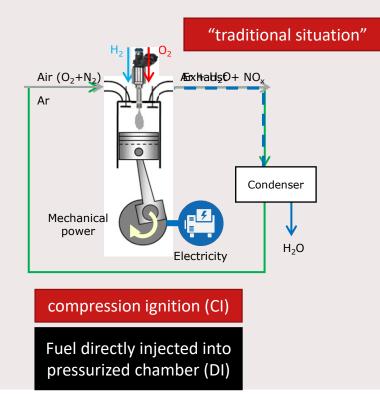

Output parameters:

- Efficiency
- NO_{v} (and CO, CO₂, HC, PM) emissions

Phase	Strategy	Diesel fuel	H ₂ fuel	Ignition method	Compression ratio
1	Diesel	Yes	No	Compression Ignition	High
2	Diesel-H2 DF	Yes	Yes, various quantities PFI	Compression Ignition	Low/High
3	H2 PFI SI	No	Yes, through PFI	Spark Ignition	Low
4	H2 LPDI SI	No	Yes, through early DI (partially premixed)	Spark Ignition	Medium
5	H2 HPDI SI	No	Yes, through late DI (diffusion flame)	Turbulent Jet / prechamber assisted spark-ignition	High

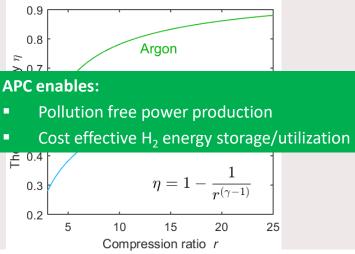
- H₂: lower minimum spark energy than gasoline
- In some ignition systems, residual energy may remain after spark
- Additional, low-energy spark during exhaust / intake stroke
- Spark breakdown voltage scales with pressure
- Spark energy too low to ignite gasoline, but will ignite H_2 !
- Ignition system without residual energy required!

- Transistor Controlled Ignition (TCI)
 - Conventional method (contact-breakers)
 - Energy stored in coil (as magnetic field)
 - Charges while switch is closed, discharges upon opening
 - Residual energy may remain after spark extinguishes!
- Capacitor Discharge Ignition (CDI)
 - Supply voltage boosted to 400V
 - Energy stored in capacitor (as electric field)
 - Charges continuously, discharges upon closing switch
 - No residual energy after switch opening!



Both schematics are highly simplified!

- EGR control
 - Skip-firing makes conventional EGR impossible
 - Exhaust gases are diluted by intake air
 - Solution: simulated EGR by pre-mixing air, N₂, and H₂O using mass flow controllers
- EGR measurements
 - H_2 combustion \rightarrow No CO₂ formation
 - Using O₂ concentration instead
 - Wideband O₂ sensors in intake + exhaust (verified by IAG/Horiba emission analyzer)

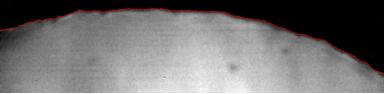


Argon Power Cycle (Max Peters)

Revolutionary power cycle

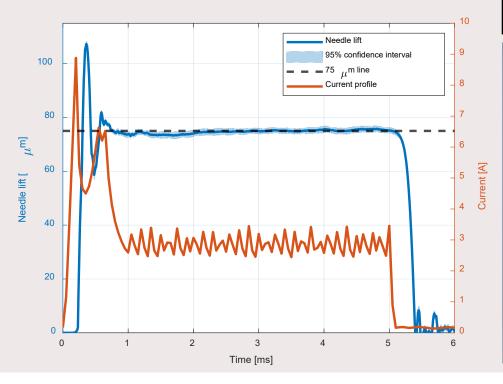
Use argon (Ar) instead of air (N₂) Affordable, non-toxic gas Recirculate in closed loop Monoatomic: Theor. Efficiency $55\% \rightarrow 80\%$ Only water formed

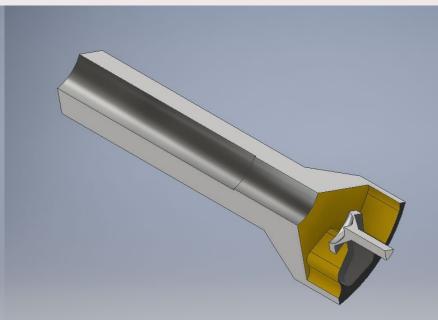
Resolution: 0.87 µm/pixel Frame rate: 100 kHz


Needle lift measurement

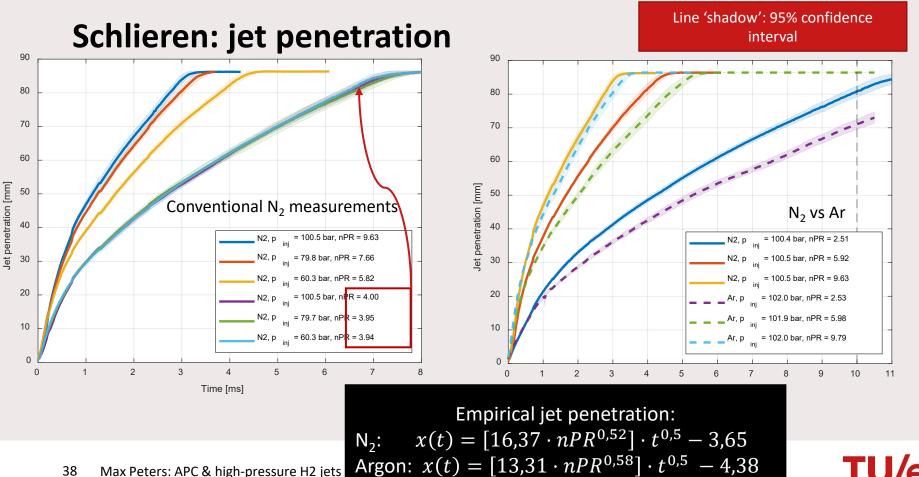
Additional measurement credits Vincent Fontijn

35


Max Peters: APC & high-pressure H2 jets

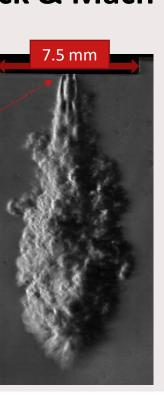

TU/e

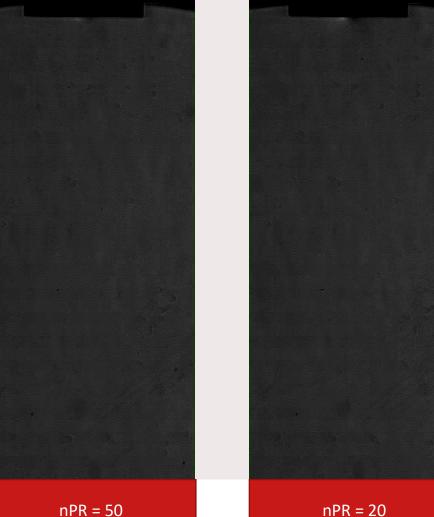
Final geometry



Conclusion: Smallest flow area around needle due to small lift!

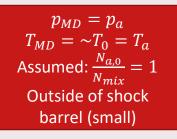
+ Experiments validated with Laser Doppler Vibrometer!




38 Max Peters: APC & high-pressure H2 jets TU/e

Barrel shock & Mach disk

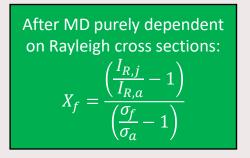
Barrel shock are small! (max. $\sim 5 \cdot d_e$) At very high nPR


nPR = 50

Rayleigh scattering

What do we need? $\frac{\sigma_f}{\sigma_a}$ (Rayleigh cross section for H₂ and ambient)

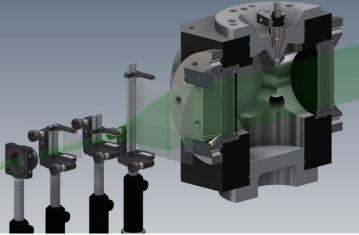
 $\frac{N_{a,0}}{N_{mix}}$ (density field inside the jet)

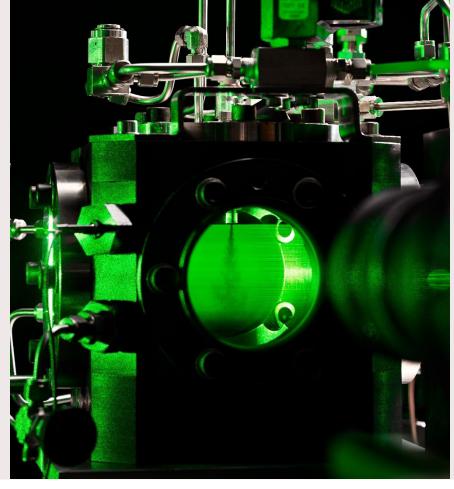

Tsujimura [2003] & Ewan and Moody [1986] for number density

Barrel-shaped	shock	Reflec	ted sho	ock
Flow boundary	<u> </u>		\sim	
	\rightarrow		73	ilip line
	Expansio	n wave	Mąch	disc
M = 1	M >	>1		M < 1
			5	~
			\succ	_
				_

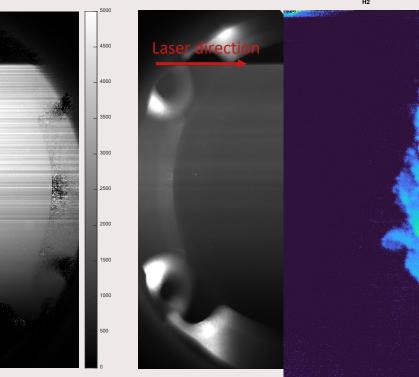
	Nozzle exit	Barrel-shaped shock	Mach disc
Pressure	p^*	p^*	$p_{MD} = p_{\alpha}$
Density	ρ^*	<< <i>p</i> *	$\rho_{MD} = P_a/R_0 T_{M0}$
Temperature	T^{*}	-	$T_{MD} = T_0$
Velocity	u*	>> u*	$u_{MD} = \sqrt{\kappa R_0 T_{ND}}$
Mach number	1	>> 1	1

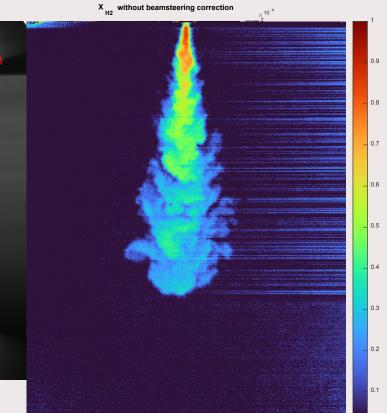
Figure 6. Schematic diagram of underexpanded jet behavior just downstream of nozzle exit [17].




Rayleigh cross section $\sigma_i \ [10^{-27} cm^2]$ at 532 nm.			
N ₂	Ar	<i>H</i> ₂	n – heptane
5.23	4.56	1.13	309.8

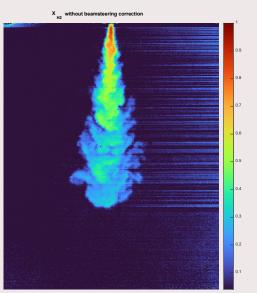
Reduced signal in the H₂ jet vs. ambient!

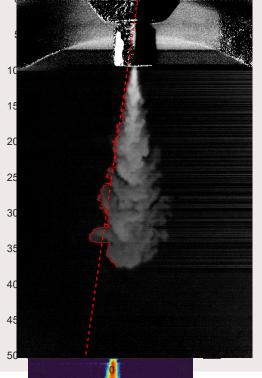


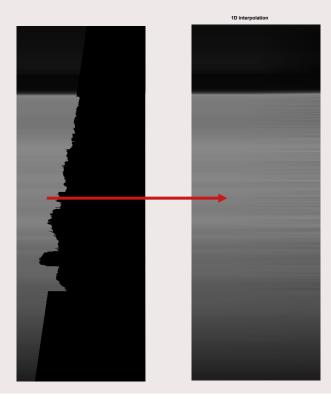


Pixis, 50-mm f/1.2, 3-nm filter @532, & 0.5-µm particle filters

flatfielded and vacuum flared begin image

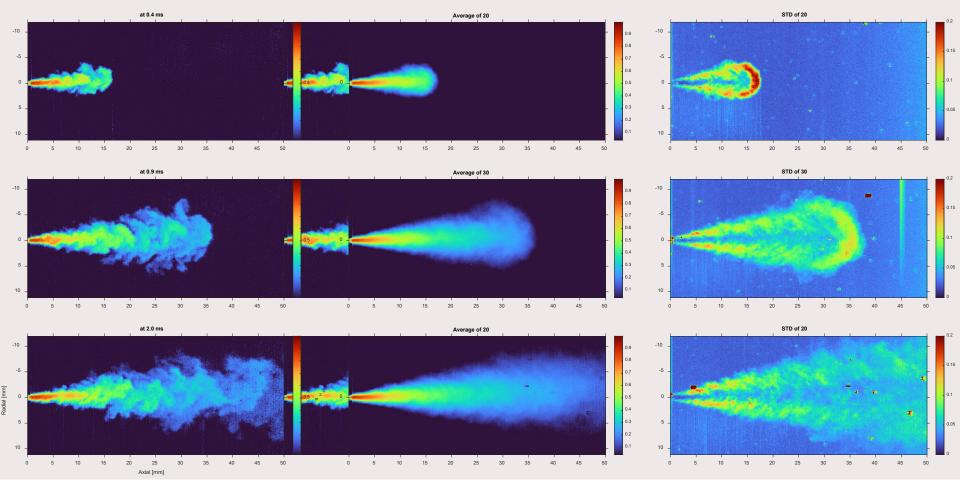

ΓU/e


Result: Image - 'Vacuum' image @ 0,03 bar (for flare correction)


42 Max Peters: APC & high-pressure H2 jets

100 bar H_2 in 10 bar N_2

Beam steering improvements



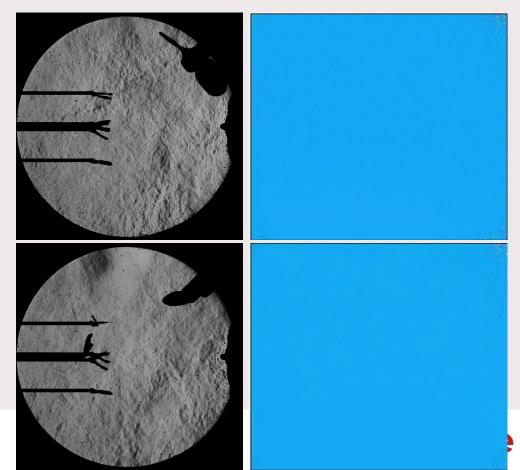
TU/e

43 Max Peters: APC & high-pres

44 Max Peters: APC & high-pressure H2 jets

TU/e

Argon Power Cycle

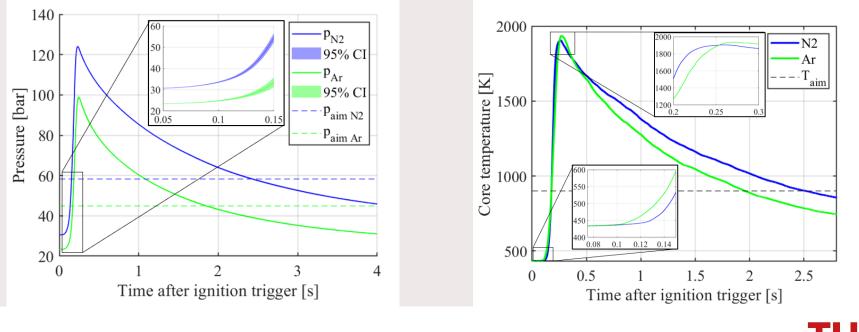

Next: combustion!

Tcore ≠ Tbulk

High-speed 50-µm bare-wire TC measurements for core T

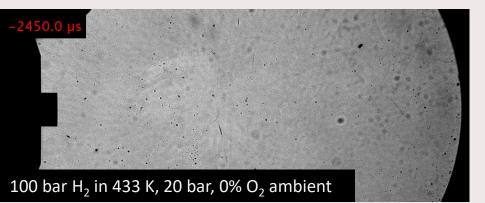
Schlieren

OH* Chemiluminescence

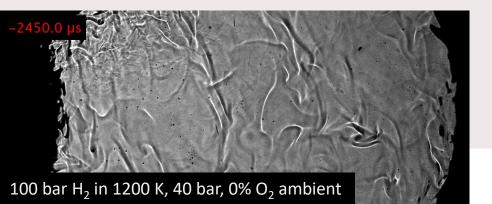

Ar

 N_2

45 Mechanical Engineering, Power and Flow Additional measurement credits Steef Licher

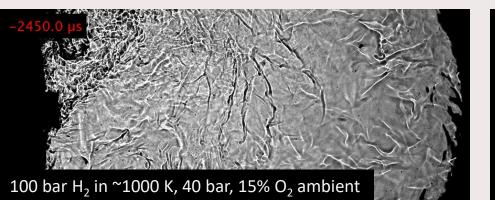

Argon Power Cycle

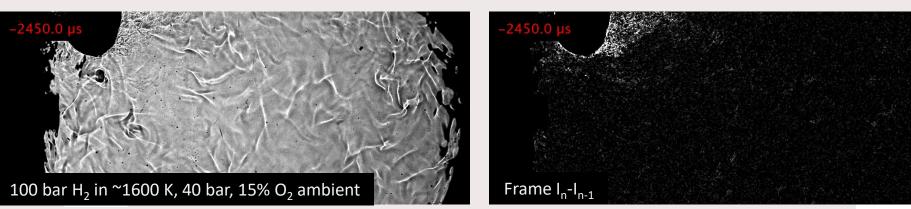
Target: 22.8 kg/m³ & 900 K @ inj., peak 2000 K \rightarrow 50% of the C₂H₂ in Ar!



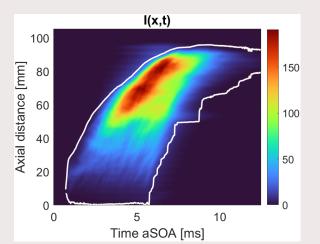
46 Mechanical Engineering, Power and Flow Additional measurement credits Steef Licher

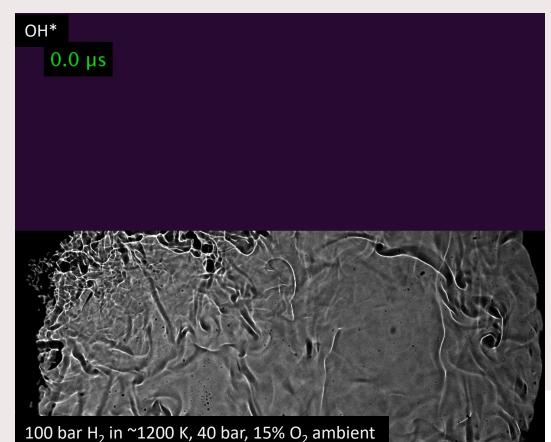
Argon Power Cycle – non-reacting, high temperature





Argon Power Cycle – reacting conditions



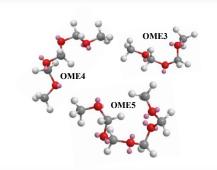


Argon Power Cycle – reacting conditions

OH* top view Schlieren side view

Argon Power Cycle

Some true-color recordings


8	

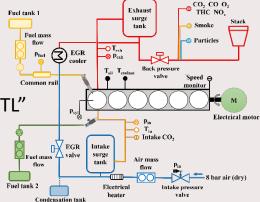
50 Mechanical Engineering, Power and Flow Additional measurement credits Giliam van der Wielen

Renewable "drop-in" fuel research by Zhongcheng Sun (GTL \rightarrow GTLB30 \rightarrow OME_n)

- From short- to long-term solutions
- Gas to liquid (GTL)
- GTL blends with 30 vol% FAME (GTLB30)
- Oxymethylene dimethyl ether (OME_n)

Zhongcheng Sun

Mechanical engineering, Power & Flow group

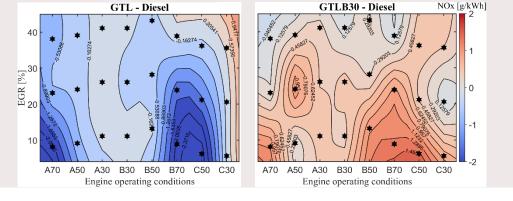


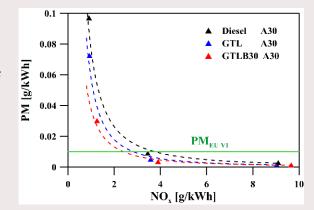
Background

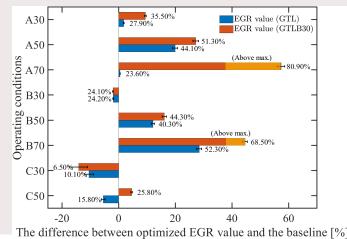
- GTL: EN 15940 compliant, higher CN, negligible sulfur & aromatics
 - Note: similar properties as HVO/HEFA → can be regarded as "XTL"
- OME_n: no C-C bonds, high oxygen content, & high CN

		[]]	7					<u></u>
	Density			Viscosity			Oxygen mass%	(A/F) _{st} ratio
	[kg/m ³]	[-]	[MJ/kg]	[mm²/s]	[°C]	[°C]	[-]	[-]
OME _x *	1067.1	82.2	19.4	1.18	64.5	-20.5	48.01	5.84
GTL	777.1	74	44	2.58	72	-19	0	14.98
GTLB30	808.3	65.8	42	2.97	66	-23	3.2	14.24
Diesel	836.1	52.2	43	2.76	66	-24	0.60	14.46
								1
		1						

^{*} OME_x (47.65% OME₃, 29.7% OME₄, 16.98% OME₅, 5.67% OME₆)

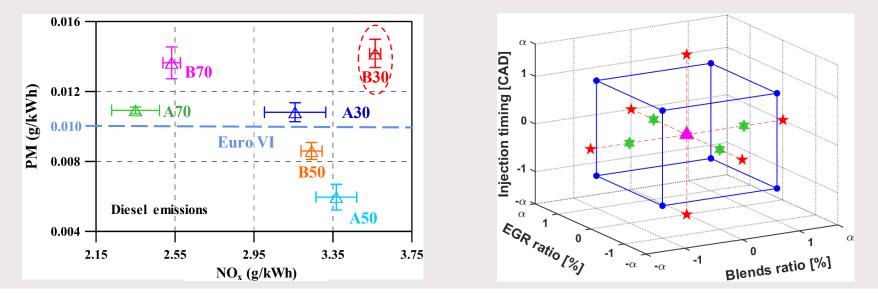



MX13 specification


MX 13	Parameter
Number of cylinder	1
Displaced volume	2.15 L (single)
Bore	130 mm
Stroke	162 mm
Compression ratio	17.2
Piston bowl shape	Double step
Cylinder head	Low swirl

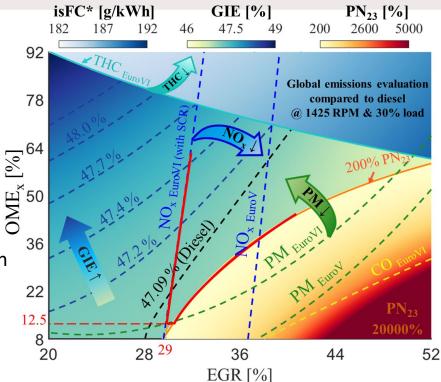
GTL & GTLB30 engine research

- + Both GTL & GTLB30 illustrate potential in improving the PM-NO_x trade-off
- NO_x emissions impact on weighted average across the engine map:
 - GTL ↓ 16.1% & GTLB30 ↑8.3%
- Potential EGR optimization strategy for minimizing NO_x while adhering to Euro VI PM limits for both GTL & GTLB30
- Drop-in optimization means different EGR calibration!



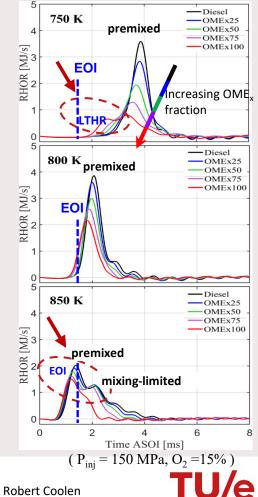
OME_x optimized research on heavy-duty engine

- OME = expensive, how much do you need? If you have x amount, fuel one or fuel many?
- Case selection: commercial B7 diesel worst emissions @ B30 (1425 RPM, 30% load)
- Design of Experiments (DOE) approach to provide a comprehensive global emissions map ^[1]


Comprehensive emissions map @B30

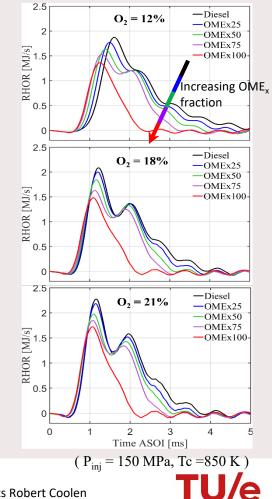
- Soot emissions \propto to $\mathsf{OME}_x\%$ in blends
- OME_x: slightly negative effect on NO_x emissions
 - Significantly mitigated with increasing EGR!
- CO effectively reduced with OME_x addition
- MX13 @ B30: EUV NO_x & EUVI PM compliant when _

• OME _x	>40%		
• FGR	>37.2%		


MX13 @ B30: EUVI with SCR & DOC compliant when

• <u>OME_x</u>	>12.5%	
• EGR	>29%	

OME_x ignition research on CRU (15 O_2 %)

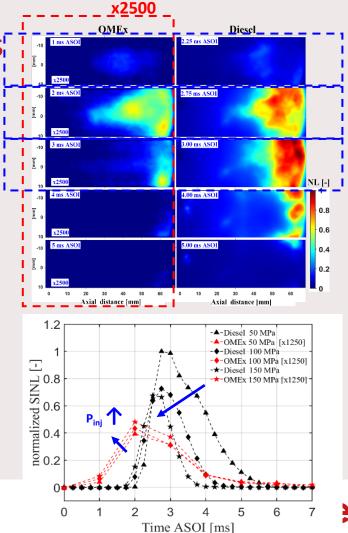

- @ 750 K, two noticeable ROHR peaks (LTHR & HTHR) of pure OME_x leads to a longer burn duration ^[2]
- 800 K as a transition point for blends (different combustion regime)
 - ROHR peak first increases with T, and then reduces (\propto BD)
- @ 850 K, now OME has the shortest burn duration

OME_x ignition research on CRU (O₂% impact)

- At lower O₂% (high EGR to simultaneously reduce NO_x)
 - Modest impact on OME_x ID & burn duration

(high fuel-oxygen content)

OME_x natural luminosity characteristics

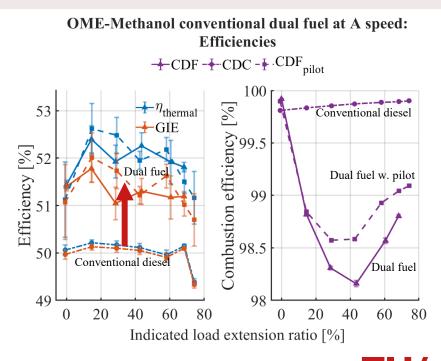

Optical diagnostics: natural luminosity (NL) imaging

- NL signal of OME_x occurs earlier (1 ms < 2.25 ms)
- NL intensity of OME_x much lower

(chemiluminescence vs soot radiation)

Diesel NL peak ~ combustion recession timing of OME_x

- Spatially integrated NL peak of OME_x occurs before diesel
- With increasing P_{inj}
 - OME SINL increases (more fuel)
 - Diesel SINL decreases (less soot, net)


OME – Methanol dual-fuel/RCCI

Idea pitch: potential future on-board production of OME out of MeOH

Dual-fual/RCCI operation with minimal OME

OME @ 30% load, but A70 conditions

- Adding methanol in steps using PFI
- Extending load up to 59% (reaching max (PRR))
- Small additional extension to 61% with a 7% pilot injection
- 1.5% GIE improvement with dual fuel

60 Collaboration w. Peter de Vos (Delft), graduation project work Joel Arendsen

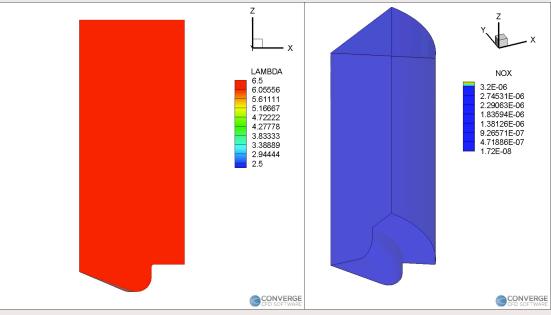
Numerical simulations

CFD

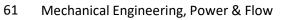
- LES
- RANS

Combustion Model

• FGM


Software

- OpenFOAM
- Converge


DME/Methanol RCCI in HD engine

ZERO

EMISSION/lab

ΓU/e

Numerical simulations

CFD

- LES
- RANS

Combustion Model

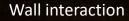
• FGM

Software

- OpenFOAM
- Converge

LES of spray A (combustion in the EHPC)

n-dodecane formaldehyde carbondioxide


time: 0.01 ms

Questions?

n.c.j.maes@tue.nl

Low-temperature chemistry

Liquid fuel

Single-orifice injector

Fuel vapor

Soot

High-temperature diffusion flame periphery

10 mm

 \longleftrightarrow

Diesel engine conditions: 630 °C 60 bar Hot thermocouple wires